АТОМНЫЙ МЕХАНИЗМ ВЛИЯНИЯ УПРУГИХ ДЕФОРМАЦИЙ ЭПИТАКСИАЛЬНЫХ СЛОЕВ Ge НА ПОВЕРХНОСТИ Si(111) НА ДИФФУЗИЮ АДАТОМОВ Ge

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

С помощью расчетов на основе теории функционала плотности исследован атомный механизм влияния деформаций сжатия, образующихся на поверхности эпитаксиальных слоев Ge(111)-7×7, выращенных на подложке Si(111), на диффузию адатомов Ge. Было найдено, что энергетический барьер, ограничивающий миграцию адатомов Ge на большие расстояния, расположен вблизи угловых вакансий структуры 7 × 7 и вызван образованием ковалентной связи между адатомом Ge и атомом димера в составе структуры 7 × 7. Показано, что увеличение барьера на упруго-сжатой поверхности происходит из-за усиления связи в димере при сжатии поверхности, что ведет к ослаблению связи между адатомом Ge и атомом димера.

Об авторах

Р. А. Жачук

Институт физики полупроводников им. А.В. Ржанова Сибирского отделения Российской академии наук

Email: zhachuk@gmail.com
Новосибирск, Россия

Список литературы

  1. H. Brune, K. Bromann, H. R¨oder, K. Kern, J. Jacobsen, P. Stoltze, K. Jacobsen, and J. Nørskov, Phys. Rev.B 52, R14380(R) (1995).
  2. Ratsch, A.P. Seitsonen, and M. Scheffler, Phys. Rev.B 55, 6750 (1997).
  3. O.P. Pchelyakov, A.V. Dvurechensky, A.V. Latyshev, and A. L. Aseev, Semicond. Sci.Technol. 26, 014027 (2010).
  4. V. Cherepanov and B. Voigtl¨ander, Phys.Rev.B 69, 125331 (2004).
  5. V. Cherepanov and B. Voigtl¨ander, Appl.Phys. Lett. 81, 4745 (2002).
  6. Takayanagi, Y. Tanishiro, S. Takahashi, and M. Takahashi, Surf. Sci. 164, 367 (1985).
  7. H. J. Gossmann, J. C. Bean, L. C. Feldman, E. G. McRae, and I. K. Robinson. Phys.Rev. Lett. 55, 1106 (1985).
  8. R. Zhachuk, S. Teys, and J. Coutinho, J.Chem.Phys. 138, 224702 (2013).
  9. J.M. Soler, E. Artacho, J.D. Gale, A. Garc´ia, J. Junquera, P. Ordej´on, and D. Sanchez-Portal, J.Phys. Condens.Matter 14, 2745 (2002).
  10. P. Perdew, K. Burke, and M. Ernzerhof, Phys.Rev. Lett. 77, 3865 (1996).
  11. Р.А.Жачук, С.А. Тийс, Б. З. Ольшанецкий, ЖЭТФ 140, 1113 (2011).
  12. C.M. Chang and C.M. Wei, Phys.Rev.B 67, 033309 (2003).
  13. R. Zhachuk, S. Teys, B. Olshanetsky, and S. Pereira, Appl.Phys. Lett. 95, 061901 (2009).
  14. T. Sato, S. I. Kitamura, and M. Iwatsuki, Surf. Sci. 445, 130 (2000).
  15. H. Uchida, T. Kuroda, F. B. Mohamad, J. Kim,K. Kashiwagi, K. Nishimura, and M. Inoue, Phys. Stat. Sol. 241, 1665 (2004).
  16. Vitali, M.G. Ramsey, and F.P. Netzer, Phys. Rev. Lett. 83, 316 (1999).
  17. O. Custance, I. Brihuega, J.M. G´omez-Rodr´iguez, and A.M. Bar´o, Surf. Sci. 482–485, 1406 (2001).
  18. O. Custance, S. Brochard, I. Brihuega, E. Artacho, J.M. Soler, A.M. Bar´o, and J.M. G´omez-Rodr´iguez, Phys.Rev.B 67, 235410 (2003).
  19. J. Mysliveˇcek, P. Sobot´ik, I. Oˇst’´adal, T. Jarol´imek, and P. ˇSmilauer, Phys.Rev.B 63, 045403 (2001).
  20. Polop, E. Vasco, J.A. Mart´in-Gago, and J. L. Saced ´on, Phys.Rev.B 66, 085324 (2002).
  21. А.Е. Долбак, Р.А.Жачук,ЖЭТФ 160, 55 (2021).
  22. S. Hwang, M. S. Ho, and T.T. Tsong, Phys.Rev. Lett. 83, 120 (1999).
  23. S. Hwang, M. S. Ho, and T.T. Tsong, Surf. Sci. 514, 309 (2002).
  24. S. Ho, I. S. Hwang, and T.T. Tsong, Surf. Sci. 564, 93 (2004).

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024