Heat-resistant coatings based on silicon carbide on graphite

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A method for forming heat-resistant silicon carbide coatings on graphite products is proposed and investigated. The coating is formed by simultaneous occurrence of several chemical reactions between the silicon melt, carbon monoxide and the near-surface region of graphite at temperatures slightly exceeding the melting point of silicon. The formed coating has a thickness of up to several millimeters, has high mechanical strength and hardness. The samples were examined by various methods, including Raman spectroscopy, SEM. Thermal resistance of the obtained coatings was studied by testing in high-enthalpy subsonic air flows. It was shown that the coatings withstand such exposure at temperatures up to 1750°C for 30 min. Mechanisms of self-healing of the coating under the influence of oxygen at high temperature were revealed.

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Antipov

Saint Petersburg State Technological Institute (Technical University)

Email: sergey.a.kukushkin@gmail.com
Ресей, Saint Petersburg

S. Galkin

Institute for Problems in Mechanics named after A. Yu Ishlinsky RAS

Email: sergey.a.kukushkin@gmail.com
Ресей, Moscow

А. Grashchenko

Institute of Problems of Mechanical Engineering RAS

Email: sergey.a.kukushkin@gmail.com
Ресей, St. Petersburg

D. Klimov

Institute for Problems in Mechanics named after A. Yu Ishlinsky RAS

Email: sergey.a.kukushkin@gmail.com
Ресей, Moscow

А. Kolesnikov

Institute for Problems in Mechanics named after A. Yu Ishlinsky RAS

Email: sergey.a.kukushkin@gmail.com
Ресей, Moscow

S. Kukushkin

Institute of Problems of Mechanical Engineering RAS

Хат алмасуға жауапты Автор.
Email: sergey.a.kukushkin@gmail.com
Ресей, St. Petersburg

А. Osipov

Institute of Problems of Mechanical Engineering RAS

Email: sergey.a.kukushkin@gmail.com
Ресей, St. Petersburg

А. Red’kov

Institute of Problems of Mechanical Engineering RAS

Email: sergey.a.kukushkin@gmail.com
Ресей, St. Petersburg

Е. Tepteeva

Institute for Problems in Mechanics named after A. Yu Ishlinsky RAS

Email: sergey.a.kukushkin@gmail.com
Ресей, Moscow

А. Chaplygin

Institute for Problems in Mechanics named after A. Yu Ishlinsky RAS

Email: sergey.a.kukushkin@gmail.com
Ресей, Moscow

Әдебиет тізімі

  1. Li J., Dunzik-Gouga M. L., Wang J. Recent advances in the treatment of irradiated graphite: A review // Ann. Nucl. Energy. 2017. V. 110. P. 140–147. https://doi.org/10.1016/j.anucene.2017.06.040
  2. Chung D.D.L. Review graphite // J. Mater. Sci. 2002. V. 37. P. 1475–1489. https://doi.org/10.1023/A:1014915307738
  3. Fallahdoost H., Nouri A., Azimi A. Dual functions of TiC nanoparticles on tribological performance of Al/graphite composites // J. Phys. Chem. Solids. 2016. V. 93. P. 137–144. https://doi.org/10.1016/j.jpcs.2016.02.020
  4. Py X., Olives R., Mauran S. Paraffin/porous-graphite-matrix composite as a high and constant power thermal storage material // Int. J. Heat Mass Transfer. 2001. V. 44. № 14. P. 2727–2737. https://doi.org/10.1016/S0017-9310(00)00309-4
  5. Rozenberg A.S., Sinenko Y.A., Chukanov N.V. Regularities of pyrolytic boron nitride coating formation on a graphite matrix // J. Mater. Sci. 1993. V. 28. P. 5528–5533. https://doi.org/10.1007/BF00367825
  6. Chen Z.B., Bian H., Hu S.P., Song X.G., Niu C.N., Duan X.K. et al. Surface modification on wetting and vacuum brazing behavior of graphite using AgCu filler metal // Surf. Coat. Technol. 2018. V. 348. P. 104–110. https://doi.org/10.1016/j.surfcoat.2018.05.039
  7. Cho Y.J., Summerfield A., Davies A., Cheng T.S., Smith E.F., Mellor C.J. et al. Hexagonal boron nitride tunnel barriers grown on graphite by high temperature molecular beam epitaxy // Sci. Rep. 2016. V. 6. P. 34474. https://doi.org/10.1038/srep34474
  8. Fu Q.G., Li H.J., Shi X.H., Li K.Z., Sun G.D. Silicon carbide coating to protect carbon/carbon composites against oxidation // Scr. Mater. 2005. V. 52. № 9. P. 923–927. https://doi.org/10.1016/j.scriptamat.2004.12.029
  9. Wang R.Q., Zhu S.Z., Huang H.B., Wang Z.F., Liu Y.B., Ma Z., Qian F. Low-pressure plasma spraying of ZrB2-SiC coatings on C/C substrate by adding TaSi2 // Surf. Coat. Technol. 2021. V. 420. P. 127332. https://doi.org/10.1016/j.surfcoat.2021.127332
  10. Liu X.F., Huang Q.Z., Su Z.A., Jiang J.X. Preparation of SiC coating by chemical vapor reaction // J. Chin. Ceram. Soc. 2004. V. 32. № 7. P. 906–910.
  11. Kang P., Zhang B., Chen G., Wu G. Synthesis of nanostructured SiC coatings on carbon fibres by in situ reaction sintering with milled powders // Surf. Coat. Technol. 2010. V. 205. № 2. P. 294–298. https://doi.org/10.1016/j.surfcoat.2010.06.043
  12. Okuni T., Miyamoto Y., Abe H., Naito M. Joining of silicon carbide and graphite by spark plasma sintering // Ceram. Int. 2014. V. 40. № 1. P. 1359–1363. https://doi.org/10.1016/j.ceramint.2013.07.017
  13. Lee J.E., Kim B.G., Yoon J.Y., Ha M.T., Lee M.H., Kim Y. et al.The role of an SiC interlayer at a graphite–silicon liquid interface in the solution growth of SiC crystals // Ceram. Int. 2016. V. 42. № 10. P. 11611–11618. https://doi.org/10.1016/j.ceramint.2016.04.060
  14. Zhu Q., Qiu X., Ma C. Oxidation resistant SiC coating for graphite materials // Carbon. 1999. V. 37. № 9. P. 1475–1484. https://doi.org/10.1016/S0008-6223(99)00010-X
  15. Li Y., Wang Q., Fan H., Sang S., Li Y., Zhao L. Synthesis of silicon carbide whiskers using reactive graphite as template // Ceram. Int. 2014. V. 40. № 1. P. 1481–1488. https://doi.org/10.1016/j.ceramint.2013.07.032
  16. Hu L., Zou Y., Li C.H., Liu J.A., Shi Y.S. Preparation of SiC nanowires on graphite paper with silicon powder // Mater. Lett. 2020. V. 269. P. 127444. https://doi.org/10.1016/j.matlet.2020.127444
  17. Al-Ruqeishi M. S., Nor R. M., Amin Y. M., Al-Azri K. Direct synthesis of β-silicon carbide nanowires from graphite only without a catalyst // J. Alloys Compd. 2010. V. 497. № 1–2. P. 272–277. https://doi.org/10.1016/j.jallcom.2010.03.025
  18. Haibo O., Hejun L., Lehua Q., Zhengjia L., Jian W., Jianfeng W. Synthesis of a silicon carbide coating on carbon fibers by deposition of a layer of pyrolytic carbon and reacting it with silicon monoxide // Carbon. 2008. V. 46. № 10. P. 1339–1344. https://doi.org/10.1016/j.carbon.2008.05.017
  19. Grashchenko A.S., Kukushkin S.A., Osipov A.V., Redkov A.V. Formation of composite SiC-C coatings on graphite via annealing Si-melt in CO // Surf. Coat. Technol. 2021. V. 423. P. 127610. https://doi.org/10.1016/j.surfcoat.2021.127610
  20. Grashchenko A.S., Kukushkin S.A., Osipov A.V., Redkov A.V. Mechanical properties of a SiC composite coating on graphite obtained by the atomic substitution method // Letters to the Journal of Technical Physics. 2021. V. 47. No. 20. P. 7–10. https://doi.org/10.21883/PJTF.2021.20.51605.18918 [in Russian].
  21. Kukushkin S.A., Osipov A.V., Feoktistov N.A. Synthesis of epitaxial silicon carbide films through the substitution of atoms in the silicon crystal lattice: A review // Phys. Solid State. 2014. V. 56. P. 1507–1535. https://doi.org/10.1134/S1063783414080137
  22. Kukushkin S.A., Osipov A.V. A new method for the synthesis of epitaxial layers of silicon carbide on silicon owing to formation of dilatation dipoles // J. Appl. Phys. 2013. V. 113. № 2. P. 024909. https://doi.org/10.1063/1.4773343
  23. Kukushkin S.A., Osipov A.V. Theory and practice of SiC growth on Si and its applications to wide-gap semiconductor films // J. Phys. D: Appl. Phys. 2014. V. 47. № 31. P. 313001. https://doi.org/10.1088/0022-3727/47/31/313001
  24. Kukushkin S.A., Osipov A.V. New method for growing silicon carbide on silicon by solid-phase epitaxy: Model and experiment // Phys. Solid State. 2008. V. 50. P. 1238. https://doi.org/10.1134/S1063783408070081
  25. Gordeev A.N., Kolesnikov A.F. New modes of plasma flow and heat transfer in the high-frequency induction plasma torch VGU-4 // Physicochemical kinetics in gas dynamics. 2008. № 7. P. 18–18. [in Russian].
  26. Sevastyanov V.G., Simonenko E.P., Gordeev A.N., Simonenko N.P., Kolesnikov A.F., Papynov E.K. et al. Behavior of ceramic material HfB2-SiC (45 vol.%) in a flow of dissociated air and analysis of the emission spectrum of the boundary layer above its surface // Russ. Journal of Inorganic Chemistry. 2015. V. 60. No. 11. P. 1485–1485. https://doi.org/10.7868/S0044457X15110136 [in Russian].
  27. Simonenko E.P., Simonenko N.P., Kolesnikov A.F., Chaplygin A.V., Lysenkov A.S., Nagornov I.A. et al. Modification of UHTC composition HfB2–30% SiC with graphene (1 vol. %) and its effect on behavior in supersonic air flow // Russian Journal of Inorganic Chemistry. 2021. V. 66. № 9. P. 1314–1325. https://doi.org/10.31857/S0044457X21090142 [in Russian].
  28. Simonenko E.P., Simonenko N.P., Kolesnikov A.F., Chaplygin A.V., Papynov E.K., Shichalin O.O. et al. Effect of supersonic nitrogen flow on ceramic material Ta4HfC5–SiC // Journal of Inorganic Chemistry. 2023. V. 68. No. 4. P. 551–559. https://doi.org/10.31857/S0044457X22602358 [in Russian].
  29. Tuinstra F., Koenig J.L. Raman spectrum of graphite // J. Chem. Phys. 1970. V. 53. № 3. P. 1126–1130. https://doi.org/10.1063/1.1674108
  30. Nakashima S., Harima H. Raman investigation of SiCpolytypes // Phys. Status Solidi A. 1997. V. 162. № 1. P. 39–64. https://doi.org/10.1002/1521-396X(199707)162:1<39::AID-PSSA39>3.0.CO;2-L
  31. Kitaev Yu.E., Kukushkin S.A., Osipov A.V., Redkov A.V. New trigonal (rhombohedral) phase of SiC: abinitio calculations, symmetry analysis and Raman spectra // FTT. 2018. Issue 10. P. 2030–2035. https://doi.org/10.21883/FTT.2018.10.46534.107 [in Russian].
  32. Perova T.S., Kukushkin S.A., Osipov A.V. Raman microscopy and imaging of semiconductor films grown on SiChybrid substrate fabricated by the method of coordinated substitution of atoms on silicon // Handbook of silicon carbide materials and devices / Ed. Z.C. Feng. Boca Raton: CRC Press, 2022. P. 327–372. https://doi.org/10.1201/9780429198540
  33. Bates J.B. Raman spectra of α and βcristobalite // J. Chem. Phys. 1972. V. 57. № 9. P. 4042–4047. https://doi.org/10.1063/1.1678878
  34. Redkov A.V., Grashchenko A.S., Kukushkin S.A., Osipov A.V., Kotlyar K.P., Likhachev A.I. et al. Studying evolution of the ensemble of micropores in a SiC/Si structure during its growth by the method of atom substitution // Phys. Solid State. 2019. V. 61. P. 299–306. https://doi.org/10.1134/S1063783419030272
  35. Anisimov K.S., Malkov A.A., Malygin A.A. Mechanism of thermal oxidation of silicon carbide modified by chromium oxide structures // Russ. J. Gen. Chem. 2014. V. 84. P. 2375–2381. https://doi.org/10.1134/S1070363214120032
  36. Gorsky V.V., Gordeev A.N., Dudkina T.I. Aerothermochemical destruction of silicon carbide washed by a high-temperature air flow // TVT. 2012. V. 50. Issue 5. P. 692–699. [in Russian].

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Photographs of sample #2, (a) and (b) – before testing, (c) and (d) after testing. (a) and (c) – front side; (b) and (d) – back side.

Жүктеу (656KB)
3. Fig. 2. Time dependences of the main plasma torch operating parameters and surface temperatures measured by the spectral ratio pyrometer, total radiation pyrometer and thermal imager in the experiment with sample № 2.

Жүктеу (319KB)
4. Fig. 3. Thermal images of sample #2 at the 261st (a), 978th (b) and 1439th (c) seconds of testing and (d, d, e) – the corresponding temperature profiles along the lines marked in the figures (a, b, c).

Жүктеу (530KB)
5. Fig. 4. Time dependences of the integral and spectral (at a wavelength of 0.9 μm) emissivity of the surface of the material of sample No. 2 during testing, as well as the temperatures from which they were obtained.

Жүктеу (296KB)
6. Fig. 5. Photographs of the surface of sample No. 2 before exposure to a high-enthalpy air flow. a) edge of the sample at 1x magnification, b) middle of the sample surface at 5x magnification.

Жүктеу (406KB)
7. Fig. 6. Photographs of the surface of sample No. 2 after exposure to a high-enthalpy air flow. a) edge of the sample at 5x magnification, b) middle of the sample surface at 5x magnification.

Жүктеу (409KB)
8. Fig. 7. Raman spectra of the sample surface before and after testing (a), SEM image of a sample cleavage after testing (b), and data on the elemental composition determined by energy-dispersive spectroscopy (EDS) (c).

Жүктеу (389KB)

© Russian Academy of Sciences, 2025