Supramolecular Lanthanide Complexes with Cucurbituril: Luminescence and Logic Devices

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Complexes of the composition [{DyxLn2–x(H2O)5(NO3)}2CB[6]] (NO3)4 · HNO3 · 6H2O (x = 1, Ln = Eu; x = 0.8, Gd, Ho) (I–III) were obtained from a mixture of lanthanide nitrates and cucurbit[6]uril (C36H36N24O12, CB[6]) in nitric acid upon heating at 100°C. According to X-ray diffraction analysis (XRD), the lanthanide cation in compounds I–III coordinates two oxygen atoms of the CB[6] molecule, H2O molecules, and nitrate ions. Compounds I–III were characterized by XRD, IR and ICP-OES spectroscopy, and elemental analysis. Based on the luminescence spectra, the chromaticity coordinates were determined, with values very close to those of white light. This feature results from the presence of two Dy3+-centered emission bands of comparable intensity, one of which — the hypersensitive transition 4F9/26H13/2 — is due to the relatively high symmetry of the lanthanide coordination environment, close to C4v. Additionally, a distinctive feature of compounds I–III is the strong dependence of their luminescence spectra on the excitation wavelength. Based on this phenomenon, models of molecular logic devices have been proposed, capable of switching the luminescent signal upon irradiation with light of different wavelengths.

作者简介

M. Rakhmanova

Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences

Email: rakhmanova_m@mail.ru
ORCID iD: 0000-0003-2275-8931
PhD in Physics and Mathematics, Senior Researcher Novosibirsk, Russian Federation

T. Sukhikh

Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences

Email: sukhikh@niic.nsc.ru
ORCID iD: 0000-0001-5269-9130
PhD in Chemistry, Senior Researcher Novosibirsk, Russian Federation

E. Kovalenko

Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences

Email: e.a.kovalenko@niic.nsc.ru
ORCID iD: 0000-0002-2169-9768
PhD in Chemistry, Senior Researcher Novosibirsk, Russian Federation

参考

  1. Wu J., Zhou X., Zhang D. et al. // J. Lumin. 2023. V. 257. P. 119686. https://doi.org/10.1016/j.jlumin.2023.119686
  2. Zhang T.T., Yang X.N., Hu J.H. et al. // Chem. Eng. J. 2023. V. 452. P. 138960. https://doi.org/10.1016/j.cej.2022.138960
  3. Zhao Y., Li D. // J. Mater. Chem. C. 2020. V. 8. P. 12739. https://doi.org/10.1039/D0TC03430D
  4. Tcelykh L.O., Kozhevnikova V.Y., Goloveshkin A.S. et al. // Analyst. 2019. https://doi.org/10.1039/c9an02023c
  5. Zanella S., Hernandez-Rodriguez M.A., Ferreira R.A.S. et al. // Chem. Commun. 2023. V. 59. P. 7863. https://doi.org/10.1039/d3cc01827j
  6. Zhou W.-L., Lin W., Chen Y. et al. // Small. 2023. V. 19. P. 2304009. https://doi.org/10.1002/smll.202304009
  7. Cao J., Ma X., Min M. et al. // Chem. Commun. 2014. V. 50. P. 3224. https://doi.org/10.1039/C3CC49820D
  8. Tian M., Wang Z., Yuan X. et al. // Adv. Funct. Mater. 2023. V. 33. P. 2300779. https://doi.org/0.1002/adfm.202300779
  9. Day A., Arnold A.P., Blanch R.J. et al. // J. Org. Chem. 2001. V. 66. № 24. P. 8094. https://doi.org/10.1021/jo015897c
  10. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S205327331402637
  11. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
  12. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. P. https://doi.org/339.10.1107/S0021889808042726
  13. Alexeev A.V., Gromilov S.A. // J. Struct. Chem. 2010. V. 51. № 156. P. 744. https://doi.org/10.1007/s10947-010-0110-3
  14. Prescher C., Prakapenka V.B. // High Pressure Res. 2015. V. 35. P. 223. https://doi.org/10.1080/08957959.2015.1059835
  15. Andrienko I.V., Rakhmanova M.I., Samsonenko D.G. et al. // CrystEngComm. 2023. V. 25. P. 3460. https://doi.org/10.1039/D3CE00301A
  16. Rakhmanova M., Sukhikh T., Kovalenko E. // CrystEngComm, 2024. V. 26. P. 3954. https://doi.org/10.1039/D4CE00375F
  17. Shinde K.N., Dhoble S.J., Kumar A. // J. Luminescence. 2011. V. 131. № 5. P. 931. https://doi.org/10.1016/j.jlumin.2010.12.026
  18. Mironova O.A., Ryadun A.A., Sukhikh T.S. et al. // New J. Chem. 2020. V. 44. P. 19769. https://doi.org/10.1039/d0nj04201c
  19. Bashirov D.A., Kolybalov D.S., Sukhikh T.S. et al. // J.Struct. Chem. 2020. V. 61. № 8. P. 1219. https://doi.org/10.1134/s0022476620080065
  20. Bashirov D.A., Lashchenko D.I., Sukhikh T.S. et al. // J. Struct. Chem. 2024. V. 65. P. 534. https://doi.org/10.1134/S0022476624030090
  21. Nakai H., Seo J., Kitagawa K. et al. // Dalton Trans. 2016. V. 45. № 23. P. 9492. https://doi.org/10.1039/c6dt01057a
  22. Ptak M., Mączka M., Gągor A. et al. // J. Mater. Chem. C. 2016. V. 4. № 5. P. 1019. https://doi.org/10.1039/c5tc04264j
  23. Ryabochkina P. A., Antoshkina S. A., Bolshakova E. V. et al. // Journal of Luminescence. 2012. V. 132. N 8. P. 1900. https://doi.org/10.1016/j.jlumin.2012.03.002
  24. Alvarez S., Alemany P., Casanova D. et al. // Coord. Chem. Rev. 2005. V. 249. № 17. P. 1693. https://doi.org/10.31857/S0132344X22600473
  25. Choudhury A.K.R. // Principles of color and appearance measurement. Woodhead Publishing, 2014. P. 270. https://doi.org/10.1533/9780857099242.270
  26. Erbas-Cakmak S., Kolemen S., Sedgwick A.C. et al. // Chem. Soc. Rev. 2018. V. 47. P. 2228. https://doi.org/10.1039/C7CS00491E
  27. Andreasson J., Pischel U. // Coord. Chem. Rev. 2021. V. 429. P. 213695. https://doi.org/10.1016/j.ccr.2020.213695
  28. Nicoli F., Paltrinieri E., Bakić M. et al. // Coord. Chem. Rev. 2021. V. 428. P. 213589. https://doi.org/10.1016/j.ccr.2020.213589
  29. Andreasson J., Pischel U., Straight S.D. et al. // J. Am. Chem. Soc. 2011. V. 133. P. 11641. https://doi.org/10.1021/ja203456h
  30. Zanella S., Hernandez-Rodriguez M.A., Fu L. et al. // Adv. Opt. Mater. 2022. V. 10. P. 2200138. https://doi.org/10.1002/adom.202200138

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025