


Vol 51, No 6 (2025)
Articles
Binuclear Diphenyltin(IV) Complexes with Salicylaldimine Ligands. Synthesis, Structure, Electrochemical Properties
Abstract
New binuclear tin(IV) complexes based on salicylic Schiff bases and diphenyltin oxide Ph2SnO were obtained. The structures of the complexes were confirmed by 1H, 13C and 119Sn NMR spectroscopy and X-ray diffraction analysis (CCDC 2433411). UV-Vis spectroscopy of complexes 1–4 showed that a bathochromic shift of all ligand absorption bands was observed upon complexation with the metal fragment. The ability of complexes 1–4 to undergo electrochemical transformations was investigated by cyclic voltammetry. In all cases, the oxidation and reduction of the complexes are irreversible. In the cases of complexes 2–4 with a conjugated bridge, the oxidation of two metal fragments occurs at one potential, whereas complex 1 with an unconjugated adipic bridge has two peaks on the oxidation curve at different potentials, which is probably since the oxidation of two different ‘ends’ of the molecule occurs at different potentials.



Cationic Complexes of Magnesium with Phenanthroline. Synthesis, Structural Features and Antibacterial Activity
Abstract
The interaction of magnesium oxide/magnesium pivalate with aromatic heterocyclic acids (3-indolecarboxylic (Hind); 2-thiophenecarboxylic (Htph)) and 1,10-phenanthroline (phen) led to the formation of cationic complexes [Mg(phen)(ind)(H2O)3]+ind−·2phen·1.5H2O (I) and [Mg(phen)(H2O)4]32+·6thp−·2phen (II), the structure of which was established by direct X-ray diffraction analysis (CCDC Nos. 2422043 (I) and 2422042 (II)). According to X-ray data, the complexing agent in compounds I and II is in a distorted octahedral environment {MgN2O4} with the coordination number of the magnesium atom equal to 6. In the crystal packing of I, stacking interactions are observed between the aromatic phen cycles, forming parallel stacks held together by hydrogen bonds. Outer-sphere tph− in II form strong hydrogen bonds with the coordinated water molecules, forming an 1D hydrogen-bonded framework. Antibacterial activity against a non-pathogenic strain of M. smegmatis and two strains — Lactobacterium brevis and Lactobacillus fermentum was determined for I and II. Antiproliferative activity of I was determined against cancer lines of human ovarian adenocarcinoma (SKOV3), breast adenocarcinoma (MCF7) and glioblastoma (A172).



On the Interaction of Copper(II) Complexes Cu(Gly)₂⁰, Cu(Bipy)Gly⁺, and Cu(Bipy)₂²⁺ with Glutathione
Abstract
The interaction of three copper(II) complexes — Cu(Gly)₂⁰, Cu(Bipy)₂²⁺, and Cu(Bipy)Gly⁺ — with glutathione in aqueous solution (pH 7.4, 0.2 M NaCl, 25°C, сCu = (1–10) × 10–4, сGSH = 1.0 × 10–3 M) was studied. These and similar complexes are often used in biological experiments to test anticancer and antimicrobial activity. It was shown that under physiological conditions copper(II) complexes are almost irreversibly converted into a more stable form of copper(I) thiolate complexes. The individuality of the initial complexes is completely lost. In all cases, the redox interaction of the copper(II) complexes with glutathione was rapid and quantitative. The main products were copper(I) bisthiolate complex and glutathione disulfide.



Fe(III), Co(III), and Cu(II) Complexes with Acylhydrazones Containing a Triphenylphosphonium Moiety: Synthesis, Crystal Structure, and Antibacterial Activity
Abstract
New acylhydrazones based on para- and meta-nitrobenzhydrazides and substituted salicylic aldehyde containing a triphenylphosphonium fragment were synthesized and spectrally characterized. With these acylhydrazones, a series of new mononuclear coordination compounds of Fe(III), Co(III), and Cu(II) were obtained, the molecular structure of which was determined by single-crystal X-ray diffraction. The antibacterial activity of the isolated acylhydrazones and copper(II) complexes against Staphylococcus aureus and Escherichia coli was studied. It was shown that the transition from an organic compound to a complex one contributes to a significant increase in activity against E. coli.



Synthesis, Structure and Biological Activity of Cu(II), Ni(II), Co(II) Complexes with N-[2-[(E)-2-furylmethylaminomethyl)phenyl]-4-methyl-benzenesulfamide
Abstract
Synthesized N-[2-[(E)-2-furylmethyliminomethyl)phenyl]-4-methyl-benzenesulfamide (HL) and complexes of Cu(II), Ni(II), Co(II) based on its ML2 composition. The composition, structure, and spectral properties of the obtained compounds were studied using elemental analysis, 1H NMR (for HL), IR spectroscopy, and electron absorption spectroscopy. The crystal structure of Cu(II), Ni(II), and Co(II) complexes was determined by X-ray diffraction (CCDC No. 2420740, 2420738, and 2420739, respectively). It is shown that two deprotonated ligands are chelated coordinated to metal ions by nitrogen atoms of the tosylamine and azomethine fragments of the ligand. The geometry of the surroundings of copper(II), nickel(II), and cobalt(II) ions corresponds to a strongly distorted tetrahedron. The electronic absorption spectra of HL and metal complexes have been studied. Azomethine HL and metal complexes were studied for antibacterial, protistocidal, and fungistatic activities. It was found that all compounds did not have fungistatic activity against Penicillium italicum, antibacterial activity against Staphylococcus aureus and Escherichia coli, and only for HL showed procystoid activity against Colpoda steinii at the level of the reference drug chloroquine.



Heterometallic Complex of Europium(III) Trifluoroacetate with Bis(diphenylphosphoryl)ferrocene (DPPFO2): Synthesis, Structure and Thermal Stability
Abstract
A new bimetallic complex [Eu2(OOCCF3)6(H2O)2(dppfO2)2] (I) was obtained by the reaction of aqueous europium(III) trifluoroacetate with bis(diphenylphosphoryl)ferrocene (DppfO2) in a solvent mixture of tetrahydrofuran-benzene (1: 1), and characterized by X-ray diffraction (CCDC No. 2425374), IR spectroscopy, and elemental analysis. According to the X-ray analysis data, compound I is a molecular complex in which two europium atoms are connected by bridging water molecules and trifluoroacetate anions, and terminal DppfO2 molecules are coordinated chelately. According to the STA data, the complex is thermally stable up to 200°C, its decomposition is accompanied by an exothermic effect at 285°C associated with the desorption of four trifluoroacetic acid molecules.


