On the Interaction of Copper(II) Complexes Cu(Gly)₂⁰, Cu(Bipy)Gly⁺, and Cu(Bipy)₂²⁺ with Glutathione

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The interaction of three copper(II) complexes — Cu(Gly)₂⁰, Cu(Bipy)₂²⁺, and Cu(Bipy)Gly⁺ — with glutathione in aqueous solution (pH 7.4, 0.2 M NaCl, 25°C, сCu = (1–10) × 10–4, сGSH = 1.0 × 10–3 M) was studied. These and similar complexes are often used in biological experiments to test anticancer and antimicrobial activity. It was shown that under physiological conditions copper(II) complexes are almost irreversibly converted into a more stable form of copper(I) thiolate complexes. The individuality of the initial complexes is completely lost. In all cases, the redox interaction of the copper(II) complexes with glutathione was rapid and quantitative. The main products were copper(I) bisthiolate complex and glutathione disulfide.

Full Text

Restricted Access

About the authors

I. V. Mironov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Author for correspondence.
Email: imir@niic.nsc.ru
Russian Federation, Novosibirsk

V. Yu. Kharlamova

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: imir@niic.nsc.ru
Russian Federation, Novosibirsk

References

  1. Freedman J.H., Ciriolo M.R., Peisach J. // J. Biol. Chem. 1989. V. 264. № 10. P. 5598.
  2. Кошенскова К.А., Баравиков Д.Е., Нелюбина Ю.В. и др. // Коорд. химия. 2023. Т. 49. № 10. С. 632. https://doi.org/10.31857/S0132344X23600212 (Koshenskova K.A., Baravikov D.E., Nelyubina Yu.V. et al. // Russ. J. Coord. Chem. 2023. V. 49. № 10. P. 660) https://doi.org/10.1134/S1070328423600730
  3. Śliwa E.I., Śliwińska-Hill U., Bażanów B. et al. // Molecules. 2020. V. 25. № 3. P. 741.
  4. Ruiz-Azuara L., Bravo-Gómez M.E. // Curr. Med. Chem. 2010. V. 17. P. 3606.
  5. Eremina J.A., Lider E.V., Kuratieva N.V. et al. // Inorg. Chim. Acta. 2021. V. 516. Art. 120169.
  6. Shakirova O.G., Morozova T.D., Kudyakova Y.S. et al. // Int. J. Mol. Sci. 2024. V. 25. P. 9414.
  7. Eremina J.A., Smirnova K.S., Klyushova L.S. et al. // J. Mol. Struct. 2021. V. 1245. Art. 131024.
  8. Speisky H., Gómez M., Carrasco-Pozo C. et al. // Bioorg. Med. Chem. 2008. V. 16. P. 6568.
  9. Galindo-Murillo R., García-Ramos J.C., Ruiz-Azuara L. et al. // Nucleic Acids Res. 2015. V. 43. № 11. P. 5364.
  10. Casini A., Kelter G., Gabbiani C. et al. // J. Biol. Inorg. Chem. 2009. V. 14. P. 1139.
  11. Gorini G., Magherini F., Fiaschi T. et al. // Biomedicines. 2021. V. 9. P. 871.
  12. Fernandez-Moreira V., Herrera R.P., Gimeno M.C. // Pure. Appl. Chem. 2018. V. 91. P. 247.
  13. Mironov I.V., Kharlamova V.Yu. // ChemistrySelect. 2023. V. 8. Art. e202301337.
  14. Миронов И.В., Харламова В.Ю. // Журн. неорган. химии. 2023. Т. 68. № 10. С. 1495. https://doi.org/10.31857/S0044457X23600639 (Mironov I.V., Kharlamova V.Yu. // Russ. J. Inorg. Chem. 2023. V. 68. № 10. P. 1487). https://doi.org/10.1134/S003602362360185X
  15. Crmarić D., Bura-Nakić E. // Molecules. 2023. V. 28. P. 5065.
  16. Rigo A., Corazza A., di Paolo M.L. et al. // J. Inorg. Biochem. 2004. V. 98. P. 1495.
  17. Smith R.C., Reed V.D., Hill W.E. // Phosphorus, Sulfur, Silicon Relat. Elem. 1994. V. 90. P. 147.
  18. Карякин Ю.В., Ангелов И.И. Чистые химические вещества. М.: Химия, 1974. С. 235.
  19. Bratsch S.G. // J. Phys. Chem. Ref. Data. 1989. V. 18. № 1. P. 1.
  20. Jocelyn P.C. // Eur. J. Biochem. 1967. V. 2. P. 327.
  21. Walsh M.J., Ahner B.A. // J. Inorg. Biochem. 2013. V. 128. P. 112.
  22. Österberg R., Ligaarden R., Persson D. // J. Inorg. Biochem. 1979. V. 10. P. 341.
  23. Königsberger L.-C., Königsberger E., Hefter G. et al. // Dalton Trans. 2015. V. 44. P. 20413.
  24. Perrin D.D. Stability сonstants of metal-ion complexes. Pt B: Organic ligands. New York: Pergamon Press, 1979. 1263 p.
  25. Speisky H., Gómez M., Burgos-Bravo F. et al. // Bioorg. Med. Chem. 2009. V. 17. P. 1803.
  26. Ngamchuea K., Batchelor-McAuley C., Compton R.G. // Chem. Eur. J. 2016. V. 22. № 44. P. 15937.
  27. Drochioiu G., Ion L., Ciobanu C. et al. // Eur. J. Mass Spectrom. 2013. V. 19. P. 71.
  28. Aliaga M.E., López-Alarcón C., Bridi R. et al. // J. Inorg. Biochem. 2016. V. 154. P. 78.
  29. Багиян Г.А., Королева И.К., Сорока Н.В. и др. // Кинетика и катализ. 2004. Т. 45. № 3. С. 398 (Bagiyan G.A., Koroleva I.K., Soroka N.V. et al. // Kinet. Catal. 2004. V. 45. № 3. P. 372). https://doi.org/10.1023/B:KICA.0000032171.81652.91
  30. Mejia C., Ruiz-Azuara L. // Pathol. Oncol. Res. 2008. V. 14. P. 467.
  31. Griesser R., Sigel H. // Inorg. Chem. V. 9. № 5. P. 1238.
  32. Raydan D., Rivas-Lacre I.J., Lubes V. et al. // J. Mol. Liq. 2020. V. 302. Art. 112595.
  33. Seko H., Tsuge K., Igashira-Kamiyama A. et al. // Chem. Commun. 2010. V. 46. P. 1962.
  34. Huang R., Wallqvist A., Covell D.G. // Biochem. Pharmacol. 2005. V. 69. P. 1009.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. UV spectra of solutions containing Cu(I) + GSH. cCu = 1.50 × 10⁻⁴ M, cGSH (10⁻⁴ M): 1.86 (1), 2.04 (2), 2.21 (3), 2.53 (4), 2.83 (5), 4.13 (6), 5.58 (7), 7.01 (8), 8.42 (9), 9.81 (10). pH 7.4, 0.2 M NaCl, l = 1 cm.

Download (163KB)
3. Fig. 2. UV spectra of solutions containing Cu(II) + Gly + GS*; cCu = 1.0 × 10⁻⁴ M, pH 7.4, 0.2 M NaCl, l = 1 cm, cGly = 4.21 × 10⁻⁴ M, without buffer (1); cGly = 4.0 × 10⁻⁴ M (2); cGly = 3.81 × 10⁻⁴ M, cGS* = 1.0 × 10⁻³ M (3); cGly = 4.0 × 10⁻³ M (4); cGly = 3.8 × 10⁻³ M, cGS* = 1.0 × 10⁻³ M (5); сGly = 4.0 × 10⁻² M (6); cGly = 3.9 × 10⁻² M, cGS* = 1.0 × 10⁻³ M (7); сGly = 1.0 × 10⁻³ M (without Cu2+, GS*, NaCl) (8).

Download (153KB)
4. Scheme 1.

Download (27KB)
5. Fig. 3. UV spectra of the forms. Initial complex Cu(Bipy)₂²⁺ (3.77 × 10⁻⁵ M) (1); solution after addition of GS* (1.0 × 10⁻³ M), time after mixing τ ≈ 6 s; symbols (∆) — calculation (2); Bipy (1.0 × 10⁻⁴ M) (3); Cu(GS)2* (4.75 × 10⁻⁵ M) (4); GS* (1.00 × 10⁻³ M) (5); GSSG* (1.0 × 10⁻⁴ M) (6). pH 7.4, 0.2 M NaCl, l = 1 cm.

Download (164KB)
6. Fig. 4. UV spectra of solutions: Cu(Bipy)Gly+ (5.0 × 10⁻⁵ M) (1); after addition of GS* (1.0 × 10⁻³ M), τ = 6 s–5 min (2); KNO₃ (2.5 × 10⁻⁴ M) (3). pH 7.4, 0.2 M NaCl, l = 1 cm.

Download (132KB)
7. Fig. 5. Changes in the UV spectra of Cu(Bipy)Gly⁺ solution after reduction: τ = 6 s (1); 2–6 — experimental spectra of the solution after 10, 20, 30, 50, 80 min, respectively; 2'–6' — spectrum of the new form for the same time intervals. withCu = 5.0 × 10⁻⁵ M, pH 7.4, 0.2 M NaCl, l = 1 cm.

Download (208KB)

Copyright (c) 2025 Российская академия наук