Донорно-акцепторные хромофоры на основе координационных полимеров кремния(IV) и германия(IV)

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Синтезированы новые комплексы с переносом заряда на основе бис-катехолатов германия(IV) – 36Сat2Ge, 35Cat2Ge и кремния(IV) – 36Сat2Si (36Сat и 35Cat – дианионы 3,6- и 3,5-ди-трет-бутилпирокатехина соответственно) с пиразином. Синтезированные соединения в кристаллическом состоянии представляют собой 1D-координационные полимеры с октаэдрическим окружением комплексообразователя. Электронные спектры поглощения суспензий кристаллических соединений в масле демонстрируют поглощение в диапазоне 450–800 нм, что обуславливает их интенсивную окраску. Совокупность спектральных и теоретических исследований свидетельствует о том, что синтезированные металлорганические координационные полимеры кремния и германия можно рассматривать как донорно-акцепторные хромофоры с фотоиндуцированным межлигандным переносом заряда между донорными катехолатными и акцепторными пиразиновыми лигандами.

Полный текст

Доступ закрыт

Об авторах

К. В. Арсеньева

Институт металлоорганической химии им. Г.А. Разуваева РАН

Автор, ответственный за переписку.
Email: kselenia22@gmail.com
Россия, Нижний Новгород

А. В. Климашевская

Институт металлоорганической химии им. Г.А. Разуваева РАН

Email: kselenia22@gmail.com
Россия, Нижний Новгород

А. В. Малеева

Институт металлоорганической химии им. Г.А. Разуваева РАН

Email: kselenia22@gmail.com
Россия, Нижний Новгород

К. И. Пашанова

Институт металлоорганической химии им. Г.А. Разуваева РАН

Email: kselenia22@gmail.com
Россия, Нижний Новгород

И. А. Якушев

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: kselenia22@gmail.com
Россия, Москва

П. В. Дороватовский

Национальный исследовательский центр “Курчатовский институт”

Email: kselenia22@gmail.com
Россия, Москва

А. В. Пискунов

Институт металлоорганической химии им. Г.А. Разуваева РАН

Email: kselenia22@gmail.com
Россия, Нижний Новгород

Список литературы

  1. Bigdeli F., Lollar C. T., Morsali A. et al. // Angew. Chem. Int. Ed. 2020. V. 59. № 12. P. 4652. https://doi.org/10.1002/anie.201900666
  2. Cui Y., Li B., He H. et al. // Acc. Chem. Res. 2016. V. 49. № 3. P. 483. 10.1021/acs.accounts.5b00530
  3. Tan Y.X., Wang F., Zhang J. // Chem. Soc. Rev. 2018. V. 47. № 6. P. 2130. https://doi.org/10.1039/c7cs00782e
  4. Yin H.Q., Wang X.Y., Yin X.B. // J. Am. Chem. Soc. 2019. V. 141. № 38. P. 15166. https://doi.org/10.1021/jacs.9b06755
  5. R. Dong, Z. Zhang, D.C. Tranca, et al. // Nat. Commun. 2018. V. 9. № 1. P. 2637. https://doi.org/10.1038/s41467-018-05141-4
  6. Song X., Wang X., Li Y. et al. // Angew. Chem. Int. Ed. 2020. V. 59. № 3. P. 1118. https://doi.org/10.1002/anie.201911543
  7. Yang C., Dong R., Wang M. et al. // Nat. Commun. 2019. V. 10. № 1. P. 3260. https://doi.org/10.1038/s41467-019-11267-w
  8. Liu X., Wang B., Huang X. et al. // J. Am. Chem. Soc. 2021. V. 143. № 15. P. 5779. https://doi.org/10.1021/jacs.1c00601
  9. Tian Y., Shen S., Con J. et al. // J. Am. Chem. Soc. 2016. V. 138. № 3. P. 782. https://doi.org/10.1021/jacs.5b12488
  10. Miner E.M., Fukushima T., Sheberla D. et al. // Nat. Commun. 2016. V. 7. P. 10942. https://doi.org/10.1038/ncomms10942
  11. Zhong H., Ly K.H., Wang M. et al. // Angew. Chem. Int. Ed. 2019. V. 58. № 31. P. 10677. https://doi.org/10.1002/anie.201907002
  12. Campbell M.G., Sheberla D., Liu S.F. et al. // Angew. Chem. Int. Ed. 2015. V. 54. № 14. P. 4349. https://doi.org/10.1002/anie.201411854
  13. Wu G., Huang J., Zang Y. et al. // J. Am. Chem. Soc. 2017. V. 139. № 4. P. 1360. https://doi.org/10.1021/jacs.6b08511
  14. Sheberla D., Bachman J.C., Elias J.S. et al. // Nat. Mater. 2017. V. 16. № 2. P. 220. https://doi.org/10.1038/nmat4766.
  15. Miyasaka H.// Acc. Chem. Res. 2013. V. 46. № 2. P. 248. https://doi.org/10.1021/ar300102t
  16. Lu W., Wei Z., Gu Z.Y. et al. // Chem. Soc. Rev. 2014. V. 43. P. 5561. https://doi.org/10.1039/c4cs00003j
  17. Xie L.S., Alexandrov E.V., Skorupskii G., et al. // Chem. Sci. 2019. V. 10. № 37. P. 8558. https://doi.org/10.1039/c9sc03348c
  18. McEvoy J.P., Brudvig G.W. // Chem. Rev. 2006. V. 106. № 11. P. 4455. https://doi.org/10.1021/cr0204294
  19. Deria P., Yu J., Smith T., Balaraman R.P. // J. Am. Chem. Soc. 2017. V. 139. № 16. P. 5973. https://doi.org/10.1021/jacs.7b02188
  20. Yin J.-X., Huo P., Wang S. et al. // J. Mater. Chem. C. 2015. V. 3. № 2. P. 409. https://doi.org/10.1039/c4tc02009j
  21. Guo Z., Panda D.K., Maity K. et al. // J. Mater. Chem. C. 2016. V. 4. № 5. P. 894. https://doi.org/10.1039/c5tc02232k
  22. Park S.S., Rieth A.J., Hendon C.H. Dinca M. // J. Am. Chem. Soc. 2018. V. 140. № 6. P. 2016. https://doi.org/10.1021/jacs.7b12784
  23. Qu L., Iguchi H., Takaishi S. et al. // J. Am. Chem. Soc. 2019. V. 141. № 7. P. 6802. https://doi.org/10.1021/jacs.9b01717
  24. Roy S., Huang Z., Bhunia A. et al. // J. Am. Chem. Soc. 2019. V. 141. № 40. P. 15942. https://doi.org/10.1021/jacs.9b0708.
  25. Zhong M., Kong L., Zhao K. et al. // Adv. Sci. 2021. V. 8. № 4. 2001980. https://doi.org/10.1002/advs.202001980
  26. Qiu Y.R., Cui L., Cai P.Y. et al. // Chem. Sci. 2020. V. 11. № 24. P. 6229. https://doi.org/10.1039/d0sc02388d
  27. Su J., Hu T.H., Murase R. et al. // Inorg. Chem. 2019. V. 58. № 6. P. 3698. https://doi.org/10.1021/acs.inorgchem.8b03299
  28. Wang H.Y., Ge J.Y., Hua C. et al. // Angew. Chem. Int. Ed. 2017. V. 56. № 20. P. 5465. https://doi.org/10.1002/anie.201611824
  29. Calbo J., Golomb M.J., Walsh A. // J. Mater. Chem. A. 2019. V. 7. № 28. P. 16571. https://doi.org/10.1039/c9ta04680a
  30. Dolgopolova E.A., Rice A.M., Martin C.R. et al. // Chem. Soc. Rev. 2018. V. 47. № 13. P. 4710. https://doi.org/10.1039/C7CS00861A
  31. Haldar R., Heinke L., Woll C. // Adv. Mater. 2020. V. 32. № 20. P. e1905227. https://doi.org/10.1002/adma.201905227
  32. Haldar R., Matsuda R., Kitagawa S. et al. // Angew. Chem. Int. Ed. 2014. V. 53. № 44. P. 11772. https://doi.org/10.1002/anie.201405619
  33. Akbulatov A.F., Akyeva A.Y., Shangin P.G. et al. // Membranes. 2023. V. 13. № 4. P. https://doi.org/10.3390/membranes13040439
  34. Arsenyeva K.V., Klimashevskaya A.V., Maleeva A.V. et al. // ChemPlusChem. 2024. № 89. Р. e202400504. https://doi.org/10.1002/cplu.202400504
  35. Klimashevskaya A.V., Arsenyeva K.V., Maleeva A.V. et al. // Eur. J. Inorg. Chem. 2023. V. 26. № 36. P. e202300540. https://doi.org/10.1002/ejic.202300540
  36. Nikolaevskaya E.N., Saverina E.A., Starikova A.A. et al. // Dalton Trans. 2018. V. 47. № 47. P. 17127. https://doi.org/10.1039/c8dt03397h
  37. Малеева А.В., Трофимова О.Ю., Ершова И.В. и др. // Изв. АН. Сер. хим. 2022. V. 71. № 7. P. 1441 (Мaleeva А.V., Тrofimova Yu О., Еrshova I.V. et al. // Russ. Chem. Bull. 2022. V. 71. № 7. P. 1441). https://doi.org/10.1007/s11172-022-3550-y
  38. Aрсеньева К.В., Климашевская А.В., Арсеньев М.В. и др. // Изв. АН. Сер. хим. 2024. V. 73. № 1. P. 117 (Arsenyeva К. V., Кlimashevskaya А. V., Аrsenyev М. V. et al. // Russ. Chem. Bull. 2024. V. 73. № 1. P. 117). https://doi.org/10.1007/s11172-024-4123-z
  39. Климашевская А.В., Арсеньева К.В., Черкасов А.В и др. // Журн. структур. химии. 2023. V. 64. № 12. Р. 118910. https://doi.org/10.26902/JSC_id118910
  40. Perrin D.D., Armarego W.L.F., Perrin D.R. // Purification of Laboratory Chemicals., Oxford: Pergamon Press, 1980.
  41. Ладо A.В., Пискунов A.В, Жданович И.В. и др. // Коорд. химия. 2008. V. 34. № 4. P. 258 (Lado A.V., Piskunov A.V., Zhdanovich I.V. et al. // Russ. J. Coord. Chem. 2008. № 34. P. 251. https://doi.org/10.1134/S1070328408040027
  42. Rivière P., Castel A., Satgé J. et al. // J. Organomet. Chem. 1986. V. 315. № 2. P. 157. https://doi.org/10.1016/0022-328X(86)80434-X
  43. Svetogorov R.D., Dorovatovskii P.V., Lazarenko V.A. // Cryst. Res. Technol. 2020. V. 55. № 5. 1900184. https://doi.org/10.1002/crat.201900184
  44. Kabsch W. // Acta Crystallogr. D. 2010. V. 66. № 2. P. 125. https://doi.org/10.1107/S0907444909047337
  45. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
  46. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
  47. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. № 2. P. 339. https://doi.org/10.1107/s0021889808042726
  48. Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 09. Revision D.01. Wallingford (CT, USA): Gaussian, Inc., 2013.
  49. Pritchard B.P., Altarawy D., Didier B. et al. // J. Chem. Inf. Model. 2019. V. 59. № 11. P. 4814. https://doi.org/10.1021/acs.jcim.9b00725
  50. Lou D., Yutronkie N. J., Oyarzabal I. et al. // J. Am. Chem. Soc. 2024. V. 146. № 29. P. 19649. https://doi.org/10.1021/jacs.4c05756
  51. Monroe J.C., Landee C.P., Turnbull M.M. et al. // J. Coord. Chem. 2024. V. 77. № 9–10. P. 967. https://doi.org/10.1080/00958972.2024.2344711
  52. Bibik Y.S., Fritsky I.O., Kucheriv O.I. et al. // J. Mol. Struct. 2024. V. 1318. P. 139302. https://doi.org/10.1016/j.molstruc.2024.139302
  53. Abbasova G.G., Ismayilov R.H., Tagiyev D.B. et al. // J. Mol. Struct. 2024. V. 1315. P. 138896. https://doi.org/10.1016/j.molstruc.2024.138896
  54. Buzoverov M.E., Lermontova E.Kh., Volkova O.S. et al. // Eur. J. Inorg. Chem. 2024. V. 27. № 20. Р. e202400150. https://doi.org/10.1002/ejic.202400150
  55. Малеева A.В., Трофимова O.Ю., Кочерова T.Н. и др. // Коорд. химия. 2023. V. 49. № 11. P. 693 (Maleeva A.V., Trofimova O.Y., Kocherova T.N. et al. // Russ. J. Coord. Chem. 2023. V. 49. P. 718). https://doi.org/10.31857/s0132344x23600315
  56. Пискунов А.В., Малеева А.В., Богомяков А.С. и др. // Коорд. химия. 2019. V. 45. № 5. P. 259 (Piskunov A.V., Maleeva A.V., Bogomyakov A.S. et al. // Russ. J. Coord. Chem. 2019. V. 45. № 5. P. 309). https://doi.org/10.1134/s0132344x19050025
  57. Hartmann D., Braner S., Greb L. // Chem. Commun. 2021. V. 57. № 69. P. 8572. https://doi.org/10.1039/d1cc03452a
  58. Chen K.-H., Liu Y.-H., Chiu C.-W. // Organometallics. 2020. V. 39. № 24. P. 4645. https://doi.org/10.1021/acs.organomet.0c00671
  59. Glavinović M., Krause M., Yang L. et al. // Sci. Adv. 2017. № 3. P. e1700149. https://doi.org/10.1126/sciadv.1700149
  60. Liberman-Martin A.L., Levine D.S., Liu W. et al. // Organometallics. 2016. V. 35. № 8. P. 1064. https://doi.org/10.1021/acs.organomet.5b01003
  61. Asadi A., Eaborn C., Hill M.S. et al. // Organometallics. 2002. № 21. P. 2430. https://doi.org/10.1021/om020106y
  62. Brown S.N. // Inorg. Chem. 2012. V. 51. № 3. P. 1251. https://doi.org/10.1021/ic202764j.
  63. Ладо A.В., Пискунов A.В., Черкасов А.В. и др. // Коорд. химия. 2006. V. 32. № 3. P. 181 (Lado A.V., Piskunov A.V., Cherkasov V.K. et al. // Russ. J. Coord. Chem. 2006. V. 32. № 3. P. 173). https://doi.org/10.1134/s1070328406030031
  64. Chegerev M.G., Piskunov A.V., Maleeva A.V. et al. // Eur. J. Inorg. Chem. 2016. V. 2016. № 23. P. 3813. https://doi.org/10.1002/ejic.201600501

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Молекулярное строение звена [35Cat2GePz]x (III) (слева) и [36Сat2SiPz]x (I) (справа). Для ключевых атомов приведены тепловые эллипсоиды 30%-ной вероятности. Атомы водорода не показаны для ясности.

Скачать (320KB)
3. Рис. 2. Фрагмент кристаллической упаковки координационных полимеров III (слева) и I (справа). Для ключевых атомов приведены тепловые эллипсоиды 30%-ной вероятности. Трет-бутильные заместители представлены первым четвертичным атомом углерода, а атомы водорода не показаны для ясности.

Скачать (249KB)
4. Рис. 3. Уф-видимые спектры координационных полимеров I–III в растворе ДМФА при 298 K, концентрация раствора с = 5 × 10–4 моль/л.

Скачать (117KB)
5. Рис. 4. Электронные спектры поглощения суспензий координационных полимеров I–III, зарегистрированные при 298 K в вазелиновом масле.

Скачать (123KB)
6. Рис. 5. Вид граничных орбиталей комплекса II.

Скачать (555KB)
7. Схема 1

Скачать (429KB)

© Российская академия наук, 2025