Potassium, ytterbium(II), and samarium(III) alkoxide complexes containing the tris((2-dimethylaminomethyl)phenyl)methoxide ligand: synthesis and structures

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The reaction of tris((2-dimethylaminomethyl)phenyl)methanol ((2-Me2NCH2C6H4)3COH) with potassium hydride in THF at –35°C affords dimeric alkoxide {[(2-Me2NCH2C6H4)3CO]K(THF)}2 (I) in a yield of 90%. The reaction of compound I with YbI2(THF)2 (1 : 1, 25°C) gives the Yb(II) alkoxyiodide complex {[(2-Me2NCH2C6H4)3CO]Yb(μ-I)(THF)2}2 (II) in a yield of 57%. Complex II in the crystalline state is dimeric due to two bridging iodide ligands. Unlike the Yb(II) compound, the exchange reaction of complex I with SmI2(THF)2 (1 : 1, 25°C) in THF followed by the addition of dimethoxyethane (DME) involves the oxidation of the metal to form the trivalent samarium complex [(2-Me2NCH2C6H4)3CO]2SmI (III), which is isolated in a yield of 60%. The molecular structures of the complexes are determined by X-ray diffraction (XRD) (CIF files CCDC nos. 2259700 (I), 2259701 (II), and 2259702 (III)).

全文:

受限制的访问

作者简介

А. Selikhov

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences; Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: trif@iomc.ras.ru
俄罗斯联邦, Moscow; Nizhny Novgorod

G. Taranenko

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: trif@iomc.ras.ru
俄罗斯联邦, Nizhny Novgorod

Yu. Nelyubina

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: trif@iomc.ras.ru
俄罗斯联邦, Moscow

А. Trifonov

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: trif@iomc.ras.ru
俄罗斯联邦, Moscow

参考

  1. Lyubov D.M., Tolpygin A.O., Trifonov A.A. // Coord. Chem. Rev. 2019. V. 392. P. 83.
  2. Lu E., Chu J., Chen Y. // Acc. Chem. Res. 2018. V. 51. P. 557.
  3. Wang J., Sun C.-Y., Zheng Q. et al. // Chem Asian J. 2023. V. 18. P. e202201297.
  4. Fegler W., Venugopal A., Kramer M., Okuda J. // Angew. Chem. Int. Ed. 2015. V. 54. P. 1724.
  5. Chen W., Li J., Cui C. // Synlett. 2021. V. 32. P. 962.
  6. Trifonov A.A., Basalov I.V., Kissel A.A. // Dalton Trans. 2016. V. 45. P. 19172.
  7. Trifonov A.A., Lyubov D.M. // Coord. Chem. Rev. 2017. V. 340. P. 10.
  8. Lyubov D.M., Trifonov A.A. // Inorg. Chem. Front. 2021. V. 8. P. 2965.
  9. Khristolyubov D.O., Lyubov D.M., Trifonov A.A. // Russ. Chem. Rev. 2021. V. 90. P. 529.
  10. Selikhov A.N., Mahrova T.V., Cherkasov A.V. et al. // Organometallics. 2016. V. 35. P. 2401.
  11. Selikhov A.N., Shavyrin A.S., Cherkasov A.V. et al. // Organometallics. 2019. V. 38. P. 4615.
  12. Basalov I.V., Roşca S.C., Lyubov D.M. et al. // Inorg. Chem. 2014. V. 53. P. 1654.
  13. Selikhov A.N., Mahrova T.V., Cherkasov A.V. et al. // Chem. Eur. J. 2017. V. 23. P. 1436.
  14. Basalov I.V., Lyubov D.M. et al. // Organometallics. 2013. V. 32. P. 1507.
  15. Richardson G.M., Douair I., Cameron S.A. et al. // Chem. Eur. J. 2021. V. 27. P. 13144.
  16. Wen Q., Rajeshkumar T., Maron L. et al. // Angew. Chem. Int. Ed. 2022. V. 61. P. e202200540.
  17. Morss L.R. // Chem. Rev. 1976. V. 76. P. 827.
  18. Mikheev N.B. // Inorg. Chim. Acta. 1984. V. 94. P. 241.
  19. Schumann H., Meese-Marktscheffel J.A., Esser L. // Chem. Rev. 1995. V. 95. P. 865.
  20. Evans W.J. // Inorg. Chem. 2007. V. 46. P. 3435.
  21. Arndt S., Okuda J. // Chem. Rev. 2002. V. 102. P. 1953.
  22. Wedal J.C., Evans W.J. // J. Am. Chem. Soc. 2021. V. 143. P. 18354.
  23. Woen D.H., Kotyk C.M., Mueller T.J. et al. // Organometallics. 2017. V. 36. P. 4558.
  24. Nishiura M., Guo F., Hou Z. // Acc. Chem. Res. 2015. V. 48. P. 2209.
  25. Akhnouk T., Müller J., Qiao K. et al. // J. Organomet. Chem. 1991. V. 408. P. 47.
  26. Stern D., Sabat M., Marks T.J. // J. Am. Chem. Soc. 1990. V. 112. P. 9558.
  27. Desurmont G., Li Y., Yasuda H. et al. // Organometallics. 2000. V. 19. P. 1811.
  28. Heckmann G., Niemeyer M. // J. Am. Chem. Soc. 2000. V. 122. P. 4227.
  29. Selikhov A.N., Lyubov D.M., Mahrova T.V. et al. // Russ. Chem. Bull. (Int. Ed.). 2020. V. 69. P. 1085.
  30. Zhang Z., Cui D., Trifonov A.A. // Eur. J. Inorg. Chem. 2010. P. 2861.
  31. Arnold P.L., Turner Z.R., Bellabarba R., Tooze R.P. // J. Am. Chem. Soc. 2011. V. 133. P. 11744.
  32. Arnold P.L., Marr I.A., Zlatogorsky S. et al. // Dalton Trans. 2014. V. 43. P. 34.
  33. Elvidge B.R., Arndt S., Spaniol T.P., Okuda J. // Dalton Trans. 2006. P. 890.
  34. Taranenko G.R., Selikhov A.N., Nelyubina Yu.V., Trifonov A.A. // Mendeleev Commun. 2022. V. 32. P. 777.
  35. Girard P., Namy J.-L., Kagan H.B. // J. Am. Chem. Soc. 1980. V. 102. P. 2693.
  36. Lyle S.J., Rahman M.M. // Talanta. 1963. V. 10. P. 1177.
  37. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3.
  38. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. P. 339.
  39. Boyle T.J., Andrews N.L., Rodriguez M.A. et al. // Inorg. Chem. 2003. V. 42. P. 5357.
  40. Chilsholm M.H., Drake S.R., Naiini A.A., Streib W.E. // Polyhedron. 1991. V. 10. № 3. P. 337.
  41. Kaiser M., Klett J. // Dalton Trans. 2018. V. 47. P. 12582.
  42. Veith M., Belot C., Huch V. et al. // Z. Anorg. Allg. Chem. 2010. V. 636. P. 2262.
  43. Van Den Hende J.R., Hitchcock P.B., Holmes S.A. et al. // Dalton Trans. 1995. P. 3933.
  44. Morissette M., Haufe S., McDonald R. et al. // Polyhedron. 2004. V. 23. P. 263.
  45. Hitchcock P.B., Holmes S.A., Lappert M.F., Tian S. // Chem. Commun. 1994. P. 2691.
  46. Duncalf D.J., Hitchcock P.B., Lawless G.A. // Chem. Comrnun. 1996. P. 269.
  47. Selikhov A.N., Mahrova T.V., Cherkasov A.V. et al. // Organometallics. 2015. V. 34. P. 1991.
  48. Constantine S.P., De Lima G.M., Hitchcock P.B. et al. // Chem. Commun. 1996. P. 2421.
  49. Schultz M. // Acta Crystallogr. E. 2008. V. 64. P. m232.
  50. Werner D., Deacon G.B., Junk P.C. // Eur. J. Inorg. Chem. 2018. P. 2241.
  51. Trifonov A.T., Spaniol T.P., Okuda J. // Eur. J. Inorg. Chem. 2003. P. 926.
  52. Fedushkin I.L. // Organometallics. 2000. V. 19. P. 4066.
  53. Bochkarev M.N., Zakharov L.N., Kalinina C.S. Organoderivatives of Rare Earth Elements. Dordrecht: Kluwer Academic Publishers, 1995.
  54. Arnold P.L., Liddle S.T. // Organometallics. 2006. V. 25. P. 1485.
  55. Li J., Zhao C., Liu J. et al. // Inorg. Chem. 2016. V. 55. P. 9105.
  56. Duncalf D.J., Hitchcock P.B., Lawless G.A. // Chem. Commun. 1996. P. 269.
  57. Trifonov A.A., Weghe P. Van, Collin J. et al. // J. Organomet. Chem. 1997. V. 527. P. 225.
  58. Mironova O.A., Sukhikh T.S., Konchenko S.N., Pushkarevsky N.A. // Polyhedron. 2019. V. 159. P. 337.
  59. Cole M.L., Deacon G.B., Junk P.C., Wang J. // Organometallics. 2013. V. 32. P. 1370.

补充文件

附件文件
动作
1. JATS XML
2. Scheme 1.

下载 (127KB)
3. Scheme 2.

下载 (199KB)
4. Fig. 1. General view of complex I. Here and below, the atoms are represented by thermal vibration ellipsoids (p = 30%), the hydrogen atoms and CH2 groups of THF molecules are not shown for clarity, and the numbering is given only for symmetrically independent heteroatoms. The oxygen atoms O(1S) of THF molecules are marked as THF. The molecule of the complex in the crystal occupies a special position - the inversion center located in the geometric center of the K2O2 cycle.

下载 (162KB)
5. Fig. 2. General view of complex II. Oxygen atoms O(1S) and O(2S) of THF molecules are marked as THF. The molecule of the complex in the crystal occupies a special position - the inversion center, located in the geometric center of the Yb2I2 cycle.

下载 (93KB)
6. Fig. 3. General view of complex III.

下载 (149KB)

版权所有 © Российская академия наук, 2024