Development of a Bacterial Expression System for Producing 15N/13C-Labeled Neuroglobin and Cytochrome C

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

An effective system for producing isotopically labeled heme-containing proteins of human neuroglobin and cytochrome c has been developed. The corresponding producer strains have been obtained, and optimal cultivation conditions have been selected: temperature and duration of incubation, composition of media, and concentration of expression inducer. Using far- and near-UV-vis CD spectroscopy, it was shown that the secondary structure composition of 15N-neuroglobin is close to the calculated one, and the orientation of the heme in the molecules is predominantly canonical. According to two-dimensional 1H/15N-HSQC NMR spectra of human neuroglobin and cytochrome c, the proteins are folded into a native conformation with a predominance of the α-helical structure. The resulting production system can be used to produce highly purified preparations of totally 15N/13C-labeled proteins for structural-dynamic studies using modern high-resolution NMR spectroscopy methods.

About the authors

M. A. Semenova

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS

Moscow, Russia

O. M. Smirnova

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS

Moscow, Russia

V. V. Britikov

Institute of Bioorganic Chemistry, NAS of Belarus

Minsk, Belarus

E. V. Britikova

Institute of Bioorganic Chemistry, NAS of Belarus

Minsk, Belarus

A. P. Khodnenko

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS

Moscow, Russia

Y. V. Bershatsky

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS

Moscow, Russia

A. A. Ignatova

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS

Moscow, Russia

E. V. Bocharov

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS; Moscow Institute of Physics and Technology

Moscow, Russia; Dolgoprudny, Russia

M. P. Kirpichnikov

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS; Biological faculty, Lomonosov Moscow State University

Moscow, Russia; Moscow, Russia

D. A. Dolgikh

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS; Biological faculty, Lomonosov Moscow State University

Moscow, Russia; Moscow, Russia

R. V. Chertkova

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS

Email: cherita@inbox.ru
Moscow, Russia

References

  1. Paoli M., Marles-Wright J., Smith A. // DNA Cell. Biol. 2002. V. 21. P. 271−80. https://doi.org/10.1089/104454902753759690
  2. Smith L.J., Kahraman A., Thornton J.M. // Proteins. 2010. V. 78. P. 2349–2368. https://doi.org/10.1002/prot.22747
  3. Schweitzer-Stenner R. // Molecules. 2022. V. 27. P. 8751. https://doi.org/10.3390/molecules27248751
  4. Verde C., Giordano D., Bruno S. // Antioxidants. 2023. V. 12. P. 321. https://doi.org/10.3390/antiox12020321
  5. Rivera M., Caigan G.A. // Anal. Bioanal. Chem. 2004. V. 378. P. 1464–1483. https://doi.org/10.1007/s00216-003-2340-0
  6. Burmester T., Weich B., Reinhardt S., Hankeln T. // Nature. 2000. V. 407. P. 520–523. https://doi.org/10.1038/35035093
  7. De Simone G., Sbardella D., Oddone F., Pesce A., Coletta M., Ascenzi P. // Cells. 2021. V. 10. P. 3366. https://doi.org/10.3390/cells10123366
  8. de Vidania S., Palomares-Perez I., Frank-García A., Saito T., Saido T.C., Draffin J., Szaruga M., Chavez-Gutierrez L., Calero M., Medina M., Guix F.X., Dotti C.G. // Front. Neurosci. 2020. 14. P. 562581. https://doi.org/10.3389/fnins.2020.562581
  9. Fiocchetti M., Cracco P., Montalesi E., Fernandez V.S., Stuart J.A., Marino M. // Arch. Biochem. Biophys. 2021. V. 701. P. 108823. https://doi.org/10.1016/j.abb.2021.108823
  10. Hankeln T., Ebner B., Fuchs C., Gerlach F., Haberkamp M., Laufs T.L., Roesner A., Schmidt M., Weich B., Wystub S., Saaler-Reinhardt S., Reuss S., Bolognesi M., De Sanctis D., Marden M.C., Kiger L., Moens L., Dewilde S., Nevo E., Avivi A., Weber R.E., Fago A., Burmester T. // J. Inorg. Biochem. 2005. V. 99. P. 110–119. https://doi.org/10.1016/j.jinorgbio.2004.11.009
  11. Brittain T., Skommer J., Raychaudhuri S., Birch N. // Int. J. Mol. Sci. 2010. V. 11. P. 2306–2321. https://doi.org/10.3390/ijms11062306
  12. Fago A., Mathews A.J., Brittain T. // IUBMB Life. 2008. V. 60. P. 398–401. https://doi.org/10.1002/iub.35
  13. Tejero J. // Biochem. Biophys. Res. Commun. 2020. V. 523. P. 567–572. https://doi.org/10.1016/j.bbrc.2019.12.089
  14. Alvarez-Paggi D., Hannibal L., Castro M.A., Oviedo-Rouco S., Demicheli V., Tortora V., Tomasina F., Radi R., Murgida D.H. // Chem. Rev. 2017. V. 117. P. 13382−13460. https://doi.org/10.1021/acs.chemrev.7b00257
  15. Ow Y.P., Green D.R., Hao Z., Mak T.W. // Nat. Rev. Mol. Cell Biol. 2008. V. 9. P. 532−542. https://doi.org/10.1038/nrm2434
  16. Dewilde S., Kiger L., Burmester T., Hankeln T., Baudin-Creuza V., Aerts T., Marden M.C., Caubergs R., Moens L. // J. Biol. Chem. 2001. V. 276. P. 38949–38955. https://doi.org/10.1074/jbc.m106438200
  17. Blank M., Burmester T. // Mol. Biol. Evol. 2012. V. 29. P. 3553–3561. https://doi.org/10.1093/molbev/mss164
  18. Sakamoto K., Kamiya M., Uchida T., Kawano K., Ishimori K. // Biochem. Biophys. Res. Commun. 2010. V. 398. P. 231–236. https://doi.org/10.1016/j.bbrc.2010.06.065
  19. Simonneaux G., Bondon A. // Chem. Rev. 2005. V. 105. P. 2627–2646. https://doi.org/10.1021/cr030731s
  20. Semenova M.A., Chertkova R.V., Kirpichnikov M.P., Dolgikh D.A. // Biomolecules. 2023. V. 13. P. 1233. https://doi.org/10.3390/biom13081233
  21. Bønding S.H., Henty K., Dingley A.J., Brittain T. // Int. J. Biol. Macromol. 2008. V. 43. P. 295–299. https://doi.org/10.1016/j.ijbiomac.2008.07.003
  22. Guidolin D., Agnati L.F., Tortorella C., Marcoli M., Maura G., Albertin G., Fuxe K. // Int. J. Mol. Med. 2014. V. 33. P. 111–116. https://doi.org/10.3892/ijmm.2013.1564
  23. Tiwari B., Chapagain P.P., Üren A. // Sci. Rep. 2018. V. 8. P. 10557. https://doi.org/10.1038/s41598-018-28836-6
  24. Feng Y., Liu X.-C., Li L., Gao S.-Q., Wen G.-B., Lin Y.-W. // ACS Omega. 2022. V. 7. P. 11510–11518. https://doi.org/10.1021/acsomega.2c01256
  25. Bochkova Z.V., Semenova M.A., Smirnova O.M., Maksimov G.V., Rubin, A.B., Kirpichnikov M.P., Dolgikh D.A., Chertkova R.V., Brazhe N.A. // Int. J. Biol. Macromol. 2025. V. 318. P. 145040. https://doi.org/10.1016/j.ijbiomac.2025.145040
  26. Marley J., Lu M., Bracken C. J. // J. Biomol. NMR. 2001. V. 20. P. 71–75. https://doi.org/10.1023/a:1011254402785
  27. Britikov V.V., Bocharov E.V., Britikova E.V., Dergousova N.I., Kulikova O.G., Solovieva A.Y., Shipkov N.S., Varfolomeeva L.A., Tikhonova T.V., Timofeev V.I., Shtykova E.V., Altukhov D.A., Usanov S.A., Arseniev A.S., Rakitina T.V., Popov V.O. // Int. J. Mol. Sci. 2022. V. 23. P. 9969. https://doi.org/10.3390/ijms23179969
  28. Yang Y., Allemand F., Guca E., Vallone B., Delbecq S., Roumestand C. // Biomol. NMR Assign. 2015. V. 9. P. 153–156. https://doi.org/10.1007/s12104-014-9563-1
  29. Jeng W.-Y., Chen C.-Y., Chang H.-C., Chuang W.-J. // J. Bioenerg. Biomembr. 2002. V. 34. https://doi.org/10.1023/a:1022561924392
  30. Семенова М.А., Бочкова Ж.В., Смирнова О.М., Игнатова А.А., Паршина Е.Ю., Зиганшин Р.Х., Бочаров Э.В., Браже Н.А., Максимов Г.В., Кирпичников М.П., Долгих Д.А., Черткова Р.В. // Биоорг. химия. 2023. Т. 3. С. 319–330. https://doi.org/10.31857/S013234232303020X
  31. Pepelina T.Y., Chertkova R.V., Dolgikh D.A., Kirpichnikov M.P. // Russ. J. Bioorg. Chem. 2010. V 36. P. 90–96. https://doi.org/10.1134/s1068162010010097
  32. Chertkova R.V., Bryantseva T.V., Brazhe N.A., Revin V.V., Kudryashova K.S., Yusipovich A.I., Brazhe A.R., Rubin A.B., Dolgikh D.A., Kirpichnikov M.P., Maksimov G.V. // Crystals. 2021. V. 11. P. 973. https://doi.org/10.3390/cryst11080973
  33. Semenova M.A., Smirnova O.M., Ignatova A.A., Parshina E.Y., Maksimov G.V., Kirpichnikov M.P., Dolgikh D.A., Chertkova R.V. // Russ. J. Bioorg. Chem. 2023. V. 49. P. 1483–1488. https://doi.org/10.1134/S1068162023060274
  34. Semenova M.A., Bochkova Z.V., Smirnova O.M., Maksimov G.V., Kirpichnikov M.P., Dolgikh D.A., Brazhe N.A., Chertkova R.V. // Curr. Issues Mol. Biol. 2024. V. 46. P. 3364–3378. https://doi.org/10.3390/cimb46040211
  35. Guimaraes B.G., Hamdane D., Lechauve C., Marden M.C., Golinelli-Pimpaneau B. // Acta Crystallogr. D Biol. Crystallogr. 2014. V. 70. P. 1005–1014. https://doi.org/10.1107/S1399004714000078
  36. Kelly S.M., Jess T.J., Price N.C. // Biochim. Biophys. Acta. 2005. V. 1751. P. 119–139. https://doi.org/10.1016/j.bbapap.2005.06.005
  37. Sebastiani F., Milazzo L., Exertier C., Becucci M., Smulevich G. // J. Raman Spectrosc. 2021. V. 52. P. 2536–2549. https://doi.org/10.1002/jrs.6105
  38. Nagai M., Nagai Y., Aki Y., Sakurai H., Mizusawa N., Ogura T., Kitagawa T., Yamamoto Y., Nagatomo S. // Chirality. 2016. V. 28. P. 585–592. https://doi.org/10.1002/chir.22620
  39. Vallone B., Nienhaus K., Brunori M., Nienhaus G.U. // Proteins. 2004. V. 56. P. 85–92. https://doi.org/10.1002/prot.20113
  40. Du W., Syvitski R., Dewilde S., Moens L., La Mar G.N. // J. Am. Chem. Soc. 2003. V. 125. P. 8080–8081. https://doi.org/10.1021/ja034584r
  41. Pesce A., Dewilde S., Nardini M., Moens L., Ascenzi P., Hankeln T., Burmester T., Bolognes M. // Structure. 2003. V. 11. P. 1087–1095. https://doi.org/10.1016/s0969-2126(03)00166-7
  42. Geraci G., Parkhurst L.J. // Methods Enzymol. 1981. V. 76. P. 262–275. https://doi.org/10.1016/0076-6879(81)76127-5
  43. Sambrook J., Fritsch E.F., Maniatis T. // Molecular Cloning: a Laboratory Manual. Cold Spring Harbor: Cold Spring Harbor Press, 1989.
  44. Nicolis S., Monzani E., Ciaccio C., Ascenzi P., Moens L., Casella L. // Biochem. J. 2007. V. 407. P. 89–99. https://doi.org/10.1042/bj20070372
  45. Schagger H., Jagow G. // Anal. Biochem. 1987. V. 166. P. 368–379. https://doi.org/10.1016/0003-2697(87)90587-2
  46. Mirdita. M., Schütze K., Moriwaki Y., Heo L., Ovchinnikov S., Steinegger M. // Nature Methods. 2022. V. 19. P. 679–682. https://doi.org/10.1038/s41592-022-01488-1

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences