Development of a Bacterial Expression System for Producing 15N/13C-Labeled Neuroglobin and Cytochrome C
- Авторлар: Semenova M.A.1, Smirnova O.M.1, Britikov V.V.2, Britikova E.V.2, Khodnenko A.P.1, Bershatsky Y.V.1, Ignatova A.A.1, Bocharov E.V.1,3, Kirpichnikov M.P.1,4, Dolgikh D.A.1,4, Chertkova R.V.1
-
Мекемелер:
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS
- Institute of Bioorganic Chemistry, NAS of Belarus
- Moscow Institute of Physics and Technology
- Biological faculty, Lomonosov Moscow State University
- Шығарылым: Том 51, № 5 (2025)
- Беттер: 899-910
- Бөлім: ЭКСПЕРИМЕНТАЛЬНЫЕ СТАТЬИ
- URL: https://transsyst.ru/0132-3423/article/view/695717
- DOI: https://doi.org/10.31857/S0132342325050159
- ID: 695717
Дәйексөз келтіру
Аннотация
Негізгі сөздер
Авторлар туралы
M. Semenova
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RASMoscow, Russia
O. Smirnova
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RASMoscow, Russia
V. Britikov
Institute of Bioorganic Chemistry, NAS of BelarusMinsk, Belarus
E. Britikova
Institute of Bioorganic Chemistry, NAS of BelarusMinsk, Belarus
A. Khodnenko
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RASMoscow, Russia
Y. Bershatsky
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RASMoscow, Russia
A. Ignatova
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RASMoscow, Russia
E. Bocharov
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS; Moscow Institute of Physics and TechnologyMoscow, Russia; Dolgoprudny, Russia
M. Kirpichnikov
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS; Biological faculty, Lomonosov Moscow State UniversityMoscow, Russia; Moscow, Russia
D. Dolgikh
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS; Biological faculty, Lomonosov Moscow State UniversityMoscow, Russia; Moscow, Russia
R. Chertkova
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS
Email: cherita@inbox.ru
Moscow, Russia
Әдебиет тізімі
- Paoli M., Marles-Wright J., Smith A. // DNA Cell. Biol. 2002. V. 21. P. 271−80. https://doi.org/10.1089/104454902753759690
- Smith L.J., Kahraman A., Thornton J.M. // Proteins. 2010. V. 78. P. 2349–2368. https://doi.org/10.1002/prot.22747
- Schweitzer-Stenner R. // Molecules. 2022. V. 27. P. 8751. https://doi.org/10.3390/molecules27248751
- Verde C., Giordano D., Bruno S. // Antioxidants. 2023. V. 12. P. 321. https://doi.org/10.3390/antiox12020321
- Rivera M., Caigan G.A. // Anal. Bioanal. Chem. 2004. V. 378. P. 1464–1483. https://doi.org/10.1007/s00216-003-2340-0
- Burmester T., Weich B., Reinhardt S., Hankeln T. // Nature. 2000. V. 407. P. 520–523. https://doi.org/10.1038/35035093
- De Simone G., Sbardella D., Oddone F., Pesce A., Coletta M., Ascenzi P. // Cells. 2021. V. 10. P. 3366. https://doi.org/10.3390/cells10123366
- de Vidania S., Palomares-Perez I., Frank-García A., Saito T., Saido T.C., Draffin J., Szaruga M., Chavez-Gutierrez L., Calero M., Medina M., Guix F.X., Dotti C.G. // Front. Neurosci. 2020. 14. P. 562581. https://doi.org/10.3389/fnins.2020.562581
- Fiocchetti M., Cracco P., Montalesi E., Fernandez V.S., Stuart J.A., Marino M. // Arch. Biochem. Biophys. 2021. V. 701. P. 108823. https://doi.org/10.1016/j.abb.2021.108823
- Hankeln T., Ebner B., Fuchs C., Gerlach F., Haberkamp M., Laufs T.L., Roesner A., Schmidt M., Weich B., Wystub S., Saaler-Reinhardt S., Reuss S., Bolognesi M., De Sanctis D., Marden M.C., Kiger L., Moens L., Dewilde S., Nevo E., Avivi A., Weber R.E., Fago A., Burmester T. // J. Inorg. Biochem. 2005. V. 99. P. 110–119. https://doi.org/10.1016/j.jinorgbio.2004.11.009
- Brittain T., Skommer J., Raychaudhuri S., Birch N. // Int. J. Mol. Sci. 2010. V. 11. P. 2306–2321. https://doi.org/10.3390/ijms11062306
- Fago A., Mathews A.J., Brittain T. // IUBMB Life. 2008. V. 60. P. 398–401. https://doi.org/10.1002/iub.35
- Tejero J. // Biochem. Biophys. Res. Commun. 2020. V. 523. P. 567–572. https://doi.org/10.1016/j.bbrc.2019.12.089
- Alvarez-Paggi D., Hannibal L., Castro M.A., Oviedo-Rouco S., Demicheli V., Tortora V., Tomasina F., Radi R., Murgida D.H. // Chem. Rev. 2017. V. 117. P. 13382−13460. https://doi.org/10.1021/acs.chemrev.7b00257
- Ow Y.P., Green D.R., Hao Z., Mak T.W. // Nat. Rev. Mol. Cell Biol. 2008. V. 9. P. 532−542. https://doi.org/10.1038/nrm2434
- Dewilde S., Kiger L., Burmester T., Hankeln T., Baudin-Creuza V., Aerts T., Marden M.C., Caubergs R., Moens L. // J. Biol. Chem. 2001. V. 276. P. 38949–38955. https://doi.org/10.1074/jbc.m106438200
- Blank M., Burmester T. // Mol. Biol. Evol. 2012. V. 29. P. 3553–3561. https://doi.org/10.1093/molbev/mss164
- Sakamoto K., Kamiya M., Uchida T., Kawano K., Ishimori K. // Biochem. Biophys. Res. Commun. 2010. V. 398. P. 231–236. https://doi.org/10.1016/j.bbrc.2010.06.065
- Simonneaux G., Bondon A. // Chem. Rev. 2005. V. 105. P. 2627–2646. https://doi.org/10.1021/cr030731s
- Semenova M.A., Chertkova R.V., Kirpichnikov M.P., Dolgikh D.A. // Biomolecules. 2023. V. 13. P. 1233. https://doi.org/10.3390/biom13081233
- Bønding S.H., Henty K., Dingley A.J., Brittain T. // Int. J. Biol. Macromol. 2008. V. 43. P. 295–299. https://doi.org/10.1016/j.ijbiomac.2008.07.003
- Guidolin D., Agnati L.F., Tortorella C., Marcoli M., Maura G., Albertin G., Fuxe K. // Int. J. Mol. Med. 2014. V. 33. P. 111–116. https://doi.org/10.3892/ijmm.2013.1564
- Tiwari B., Chapagain P.P., Üren A. // Sci. Rep. 2018. V. 8. P. 10557. https://doi.org/10.1038/s41598-018-28836-6
- Feng Y., Liu X.-C., Li L., Gao S.-Q., Wen G.-B., Lin Y.-W. // ACS Omega. 2022. V. 7. P. 11510–11518. https://doi.org/10.1021/acsomega.2c01256
- Bochkova Z.V., Semenova M.A., Smirnova O.M., Maksimov G.V., Rubin, A.B., Kirpichnikov M.P., Dolgikh D.A., Chertkova R.V., Brazhe N.A. // Int. J. Biol. Macromol. 2025. V. 318. P. 145040. https://doi.org/10.1016/j.ijbiomac.2025.145040
- Marley J., Lu M., Bracken C. J. // J. Biomol. NMR. 2001. V. 20. P. 71–75. https://doi.org/10.1023/a:1011254402785
- Britikov V.V., Bocharov E.V., Britikova E.V., Dergousova N.I., Kulikova O.G., Solovieva A.Y., Shipkov N.S., Varfolomeeva L.A., Tikhonova T.V., Timofeev V.I., Shtykova E.V., Altukhov D.A., Usanov S.A., Arseniev A.S., Rakitina T.V., Popov V.O. // Int. J. Mol. Sci. 2022. V. 23. P. 9969. https://doi.org/10.3390/ijms23179969
- Yang Y., Allemand F., Guca E., Vallone B., Delbecq S., Roumestand C. // Biomol. NMR Assign. 2015. V. 9. P. 153–156. https://doi.org/10.1007/s12104-014-9563-1
- Jeng W.-Y., Chen C.-Y., Chang H.-C., Chuang W.-J. // J. Bioenerg. Biomembr. 2002. V. 34. https://doi.org/10.1023/a:1022561924392
- Семенова М.А., Бочкова Ж.В., Смирнова О.М., Игнатова А.А., Паршина Е.Ю., Зиганшин Р.Х., Бочаров Э.В., Браже Н.А., Максимов Г.В., Кирпичников М.П., Долгих Д.А., Черткова Р.В. // Биоорг. химия. 2023. Т. 3. С. 319–330. https://doi.org/10.31857/S013234232303020X
- Pepelina T.Y., Chertkova R.V., Dolgikh D.A., Kirpichnikov M.P. // Russ. J. Bioorg. Chem. 2010. V 36. P. 90–96. https://doi.org/10.1134/s1068162010010097
- Chertkova R.V., Bryantseva T.V., Brazhe N.A., Revin V.V., Kudryashova K.S., Yusipovich A.I., Brazhe A.R., Rubin A.B., Dolgikh D.A., Kirpichnikov M.P., Maksimov G.V. // Crystals. 2021. V. 11. P. 973. https://doi.org/10.3390/cryst11080973
- Semenova M.A., Smirnova O.M., Ignatova A.A., Parshina E.Y., Maksimov G.V., Kirpichnikov M.P., Dolgikh D.A., Chertkova R.V. // Russ. J. Bioorg. Chem. 2023. V. 49. P. 1483–1488. https://doi.org/10.1134/S1068162023060274
- Semenova M.A., Bochkova Z.V., Smirnova O.M., Maksimov G.V., Kirpichnikov M.P., Dolgikh D.A., Brazhe N.A., Chertkova R.V. // Curr. Issues Mol. Biol. 2024. V. 46. P. 3364–3378. https://doi.org/10.3390/cimb46040211
- Guimaraes B.G., Hamdane D., Lechauve C., Marden M.C., Golinelli-Pimpaneau B. // Acta Crystallogr. D Biol. Crystallogr. 2014. V. 70. P. 1005–1014. https://doi.org/10.1107/S1399004714000078
- Kelly S.M., Jess T.J., Price N.C. // Biochim. Biophys. Acta. 2005. V. 1751. P. 119–139. https://doi.org/10.1016/j.bbapap.2005.06.005
- Sebastiani F., Milazzo L., Exertier C., Becucci M., Smulevich G. // J. Raman Spectrosc. 2021. V. 52. P. 2536–2549. https://doi.org/10.1002/jrs.6105
- Nagai M., Nagai Y., Aki Y., Sakurai H., Mizusawa N., Ogura T., Kitagawa T., Yamamoto Y., Nagatomo S. // Chirality. 2016. V. 28. P. 585–592. https://doi.org/10.1002/chir.22620
- Vallone B., Nienhaus K., Brunori M., Nienhaus G.U. // Proteins. 2004. V. 56. P. 85–92. https://doi.org/10.1002/prot.20113
- Du W., Syvitski R., Dewilde S., Moens L., La Mar G.N. // J. Am. Chem. Soc. 2003. V. 125. P. 8080–8081. https://doi.org/10.1021/ja034584r
- Pesce A., Dewilde S., Nardini M., Moens L., Ascenzi P., Hankeln T., Burmester T., Bolognes M. // Structure. 2003. V. 11. P. 1087–1095. https://doi.org/10.1016/s0969-2126(03)00166-7
- Geraci G., Parkhurst L.J. // Methods Enzymol. 1981. V. 76. P. 262–275. https://doi.org/10.1016/0076-6879(81)76127-5
- Sambrook J., Fritsch E.F., Maniatis T. // Molecular Cloning: a Laboratory Manual. Cold Spring Harbor: Cold Spring Harbor Press, 1989.
- Nicolis S., Monzani E., Ciaccio C., Ascenzi P., Moens L., Casella L. // Biochem. J. 2007. V. 407. P. 89–99. https://doi.org/10.1042/bj20070372
- Schagger H., Jagow G. // Anal. Biochem. 1987. V. 166. P. 368–379. https://doi.org/10.1016/0003-2697(87)90587-2
- Mirdita. M., Schütze K., Moriwaki Y., Heo L., Ovchinnikov S., Steinegger M. // Nature Methods. 2022. V. 19. P. 679–682. https://doi.org/10.1038/s41592-022-01488-1
Қосымша файлдар



