Higher-Order Harmonics in Hexagonal Graphene Quantum Dots

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We have considered the high-order harmonic generation in plane graphene quantum dots of hexagonal shape by the independent quasiparticle approximation-tight binding model. We have investigated how such a nonlinear effect is affected by a strong optical wave field, quantum dot typical band gap and lateral size, and dephasing processes. The equation of motion for the density matrix is solved by performing the time integration with the eight-order Runge–Kutta algorithm. If the optical wave frequency is much less than the quantum dot intrinsic band gap, the main aspects of multiphoton high harmonic emission in quantum dots are revealed. In such case dependence of the cutoff photon energy on the strength of the optical pump wave is almost linear. But when the wave frequency is comparable to the bandgap of the quantum dot, the cutoff photon energy shows saturation behavior with an increase in the wave field strength.

作者简介

Kh. Sedrakyan

Centre of Strong Fields Physics at Physics Research Institute, Yerevan State University

Email: amarkos@ysu.am
Yerevan, 0025 Armenia

A. Kazaryan

Centre of Strong Fields Physics at Physics Research Institute, Yerevan State University

Email: amarkos@ysu.am
Yerevan, 0025 Armenia

B. Avchyan

Centre of Strong Fields Physics at Physics Research Institute, Yerevan State University

Email: amarkos@ysu.am
Yerevan, 0025 Armenia

K. Pogosyan

Centre of Strong Fields Physics at Physics Research Institute, Yerevan State University

Email: amarkos@ysu.am
Yerevan, 0025 Armenia

T. Markosyan

CANDLE Synchrotron Research Institute

编辑信件的主要联系方式.
Email: amarkos@ysu.am
Yerevan, 0022 Armenia

参考

  1. D. von der Linde, T. Engers, G. Jenke, P. Agostini, G. Grillon, E. Nibbering, A. Mysyrowicz, and A. Antonetti, Phys.Rev.A 52, R25(R) (1995).
  2. P.A. Norreys, M. Zepf, S. Moustaizis, A.P. Fews, J. Zhang, P. Lee, M. Bakarezos, C.N. Danson, A. Dyson, P. Gibbon, P. Loukakos, D. Neely, F.N. Walsh, J. S. Wark, and A.E. Dangor, Phys.Rev.Lett. 76, 1832 (1996).
  3. S. Ghimire, A.D. DiChiara, E. Sistrunk, P. Agostini, L. F. DiMauro, and D.A. Reis, Nat.Phys. 7, 138 (2011).
  4. G. Vampa, T. J. Hammond, N. Thire, B. E. Schmidt, F. Legare, C.R.McDonald, T.Brabec, and P.B.Corkum, Nature 522, 462 (2015).
  5. H.K. Avetissian, Relativistic Nonlinear Electrodynamics, Relativistic Nonlinear Electrodynamics: The QED Vacuum and Matter in Super-Strong Radiation Fields, Springer, Berlin (2015).
  6. G. Ndabashimiye, S. Ghimire, M. Wu, D.A. Browne, K. J. Schafer, M. B. Gaarde, and D.A. Reis, Nature, 534, 520 (2016).
  7. Y. L. Li, Y. S. You, S. Ghimire, T. F. Heinz, H. Z. Liu, and D.A. Reis, Nat.Phys. 13 262 (2017).
  8. Y. Yin, Y. Wu, A. Chew, X. Ren, F. Zhuang, S. Gholam- Mirzaei, M. Chini, Z. Chang, Y. S. You, and S. Ghimire, Nat.Commun. 8, 724 (2017).
  9. N. Klemke, N. Tancogne-Dejean, G.M. Rossi, Y. Yang, F. Scheiba, R.E. Mainz, G. Di Sciacca, A. Rubio, F.X. Kartner, and O.D. Mucke, Nat. Commun. 10, 1319 (2019).
  10. D. Golde, T. Meier, and S.W. Koch, Phys.Rev.B 77, 075330 (2008).
  11. N. Klemke, O.D. Mucke, A. Rubio, F.X. Kartner, and N. Tancogne-Dejean, Phys.Rev.B 102, 104308 (2020).
  12. I. Kilen, M. Kolesik, J. Hader, J.V. Moloney, U. Huttner, M.K. Hagen, and S.W. Koch, Phys.Rev.Lett. 125, 083901 (2020).
  13. J. L. Krause, K. J. Schafer, and K.C. Kulander, Phys.Rev.Lett. 68, 3535 (1992).
  14. R.C. Ashoori, Nature, 379, 413 (1996).
  15. T. Chakraborty, Quantum Dots, Elsevier, Amsterdam (1999).
  16. D. Pan, J. Zhang, Z. Li, and M. Wu, Adv.Mater. 22, 734 (2010).
  17. S. Chung, R.A. Revia, and M. Zhang, Adv.Mater. 33, 1904362 (2021).
  18. H. Sun, L. Wu, W. Wei, and X. Qu, Mater.Today 16, 433 (2013).
  19. M. Bacon, S. J. Bradley, and T. Nann, Part.Part. Syst.Charact. 31, 415 (2014).
  20. K.K. Hansen, D. Bauer, and L.B. Madsen, Phys. Rev.A 97, 043424 (2018).
  21. R. Ganeev, L. Bom, J. Abdul-Hadi, M. Wong, J. Brichta, V. Bhardwaj, and T. Ozaki, Phys.Rev. Lett. 102, 013903 (2009).
  22. R. Ganeev, L.E. Bom, M.C.H. Wong, J. P. Brichta, V. Bhardwaj, P. Redkin, and T. Ozaki, Phys.Rev.A 80, 043808 (2009).
  23. R.A. Ganeev, J.Mod.Opt. 59, 409 (2012).
  24. G. P. Zhang, Phys.Rev.Lett. 95, 047401 (2005).
  25. G. P. Zhang and T. F. George, Phys.Rev.A 74, 023811 (2006).
  26. G. P. Zhang and T. F. George, J.Opt. Soc.Amer. B 24, 1150 (2007).
  27. L. Jia, Zh. Zhang, D.Z. Yang, Y. Liu, M. S. Si, G. P. Zhang, and Y. S. Liu, Phys.Rev.B 101, 144304 (2020).
  28. G. P. Zhang and Y.H. Bai, Phys.Rev.B 101, 081412 (2020).
  29. M. Lewenstein, P. Balcou, M.Y. Ivanov, A. L'Huillier, and P.B. Corkum, Phys.Rev.A 49, 2117 (1994).
  30. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K. S. Novoselov, and A.K. Geim, Rev.Mod. Phys. 81, 109 (2009).
  31. S. Gnawali, R. Ghimire, K.R. Magar, S. J. Hossaini, and V. Apalkov, Phys.Rev.B 106, 075149 (2022).
  32. P.R. Wallace, Phys.Rev. 71, 622 (1947).
  33. A.D. Guclu, P. Potasz, M. Korkusinski, and P. Hawrylak, Graphene Quantum Dots, Springer, Berlin (2014).
  34. H. Yoon, M. Park, J. Kim, T.G. Novak, S. Lee, and S. Jeon, Chem. Phys.Rev. 2, 031303 (2021).
  35. E. Goulielmakis and T. Brabec, Nat.Photon. 16, 411 (2022).
  36. A.H.C. Neto, F. Guinea, N.M.R. Peres, K. S. Novoselov, and A.K. Geim, Rev.Mod. Phys 81, 109 (2009).
  37. H.K. Avetissian, B.R. Avchyan, and G. F. Mkrtchian, J. Phys.B 45, 025402 (2012).
  38. H.K. Avetissian, A.G. Markossian, and G. F. Mkrtchian, Phys.Rev.A 84, 013418 (2011).
  39. H.K. Avetissian, A.G. Markossian, and G. F. Mkrtchian, Phys. Lett.A 375, 3699 (2011).
  40. G. Vampa, C.R. McDonald, G. Orlando, D.D. Klug, P.B. Corkum, and T. Brabec, Phys.Rev.Lett. 113, 073901 (2014).
  41. G. Vampa, C.R. McDonald, G. Orlando, P.B. Corkum, and T. Brabec, Phys.Rev.B 91, 064302 (2015).
  42. H.K. Avetissian, A.K. Avetissian, B.R. Avchyan, and G. F. Mkrtchian, Phys.Rev.B 100, 035434 (2019).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2023