Higher-Order Harmonics in Hexagonal Graphene Quantum Dots

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We have considered the high-order harmonic generation in plane graphene quantum dots of hexagonal shape by the independent quasiparticle approximation-tight binding model. We have investigated how such a nonlinear effect is affected by a strong optical wave field, quantum dot typical band gap and lateral size, and dephasing processes. The equation of motion for the density matrix is solved by performing the time integration with the eight-order Runge–Kutta algorithm. If the optical wave frequency is much less than the quantum dot intrinsic band gap, the main aspects of multiphoton high harmonic emission in quantum dots are revealed. In such case dependence of the cutoff photon energy on the strength of the optical pump wave is almost linear. But when the wave frequency is comparable to the bandgap of the quantum dot, the cutoff photon energy shows saturation behavior with an increase in the wave field strength.

Авторлар туралы

Kh. Sedrakyan

Centre of Strong Fields Physics at Physics Research Institute, Yerevan State University

Email: amarkos@ysu.am
Yerevan, 0025 Armenia

A. Kazaryan

Centre of Strong Fields Physics at Physics Research Institute, Yerevan State University

Email: amarkos@ysu.am
Yerevan, 0025 Armenia

B. Avchyan

Centre of Strong Fields Physics at Physics Research Institute, Yerevan State University

Email: amarkos@ysu.am
Yerevan, 0025 Armenia

K. Pogosyan

Centre of Strong Fields Physics at Physics Research Institute, Yerevan State University

Email: amarkos@ysu.am
Yerevan, 0025 Armenia

T. Markosyan

CANDLE Synchrotron Research Institute

Хат алмасуға жауапты Автор.
Email: amarkos@ysu.am
Yerevan, 0022 Armenia

Әдебиет тізімі

  1. D. von der Linde, T. Engers, G. Jenke, P. Agostini, G. Grillon, E. Nibbering, A. Mysyrowicz, and A. Antonetti, Phys.Rev.A 52, R25(R) (1995).
  2. P.A. Norreys, M. Zepf, S. Moustaizis, A.P. Fews, J. Zhang, P. Lee, M. Bakarezos, C.N. Danson, A. Dyson, P. Gibbon, P. Loukakos, D. Neely, F.N. Walsh, J. S. Wark, and A.E. Dangor, Phys.Rev.Lett. 76, 1832 (1996).
  3. S. Ghimire, A.D. DiChiara, E. Sistrunk, P. Agostini, L. F. DiMauro, and D.A. Reis, Nat.Phys. 7, 138 (2011).
  4. G. Vampa, T. J. Hammond, N. Thire, B. E. Schmidt, F. Legare, C.R.McDonald, T.Brabec, and P.B.Corkum, Nature 522, 462 (2015).
  5. H.K. Avetissian, Relativistic Nonlinear Electrodynamics, Relativistic Nonlinear Electrodynamics: The QED Vacuum and Matter in Super-Strong Radiation Fields, Springer, Berlin (2015).
  6. G. Ndabashimiye, S. Ghimire, M. Wu, D.A. Browne, K. J. Schafer, M. B. Gaarde, and D.A. Reis, Nature, 534, 520 (2016).
  7. Y. L. Li, Y. S. You, S. Ghimire, T. F. Heinz, H. Z. Liu, and D.A. Reis, Nat.Phys. 13 262 (2017).
  8. Y. Yin, Y. Wu, A. Chew, X. Ren, F. Zhuang, S. Gholam- Mirzaei, M. Chini, Z. Chang, Y. S. You, and S. Ghimire, Nat.Commun. 8, 724 (2017).
  9. N. Klemke, N. Tancogne-Dejean, G.M. Rossi, Y. Yang, F. Scheiba, R.E. Mainz, G. Di Sciacca, A. Rubio, F.X. Kartner, and O.D. Mucke, Nat. Commun. 10, 1319 (2019).
  10. D. Golde, T. Meier, and S.W. Koch, Phys.Rev.B 77, 075330 (2008).
  11. N. Klemke, O.D. Mucke, A. Rubio, F.X. Kartner, and N. Tancogne-Dejean, Phys.Rev.B 102, 104308 (2020).
  12. I. Kilen, M. Kolesik, J. Hader, J.V. Moloney, U. Huttner, M.K. Hagen, and S.W. Koch, Phys.Rev.Lett. 125, 083901 (2020).
  13. J. L. Krause, K. J. Schafer, and K.C. Kulander, Phys.Rev.Lett. 68, 3535 (1992).
  14. R.C. Ashoori, Nature, 379, 413 (1996).
  15. T. Chakraborty, Quantum Dots, Elsevier, Amsterdam (1999).
  16. D. Pan, J. Zhang, Z. Li, and M. Wu, Adv.Mater. 22, 734 (2010).
  17. S. Chung, R.A. Revia, and M. Zhang, Adv.Mater. 33, 1904362 (2021).
  18. H. Sun, L. Wu, W. Wei, and X. Qu, Mater.Today 16, 433 (2013).
  19. M. Bacon, S. J. Bradley, and T. Nann, Part.Part. Syst.Charact. 31, 415 (2014).
  20. K.K. Hansen, D. Bauer, and L.B. Madsen, Phys. Rev.A 97, 043424 (2018).
  21. R. Ganeev, L. Bom, J. Abdul-Hadi, M. Wong, J. Brichta, V. Bhardwaj, and T. Ozaki, Phys.Rev. Lett. 102, 013903 (2009).
  22. R. Ganeev, L.E. Bom, M.C.H. Wong, J. P. Brichta, V. Bhardwaj, P. Redkin, and T. Ozaki, Phys.Rev.A 80, 043808 (2009).
  23. R.A. Ganeev, J.Mod.Opt. 59, 409 (2012).
  24. G. P. Zhang, Phys.Rev.Lett. 95, 047401 (2005).
  25. G. P. Zhang and T. F. George, Phys.Rev.A 74, 023811 (2006).
  26. G. P. Zhang and T. F. George, J.Opt. Soc.Amer. B 24, 1150 (2007).
  27. L. Jia, Zh. Zhang, D.Z. Yang, Y. Liu, M. S. Si, G. P. Zhang, and Y. S. Liu, Phys.Rev.B 101, 144304 (2020).
  28. G. P. Zhang and Y.H. Bai, Phys.Rev.B 101, 081412 (2020).
  29. M. Lewenstein, P. Balcou, M.Y. Ivanov, A. L'Huillier, and P.B. Corkum, Phys.Rev.A 49, 2117 (1994).
  30. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K. S. Novoselov, and A.K. Geim, Rev.Mod. Phys. 81, 109 (2009).
  31. S. Gnawali, R. Ghimire, K.R. Magar, S. J. Hossaini, and V. Apalkov, Phys.Rev.B 106, 075149 (2022).
  32. P.R. Wallace, Phys.Rev. 71, 622 (1947).
  33. A.D. Guclu, P. Potasz, M. Korkusinski, and P. Hawrylak, Graphene Quantum Dots, Springer, Berlin (2014).
  34. H. Yoon, M. Park, J. Kim, T.G. Novak, S. Lee, and S. Jeon, Chem. Phys.Rev. 2, 031303 (2021).
  35. E. Goulielmakis and T. Brabec, Nat.Photon. 16, 411 (2022).
  36. A.H.C. Neto, F. Guinea, N.M.R. Peres, K. S. Novoselov, and A.K. Geim, Rev.Mod. Phys 81, 109 (2009).
  37. H.K. Avetissian, B.R. Avchyan, and G. F. Mkrtchian, J. Phys.B 45, 025402 (2012).
  38. H.K. Avetissian, A.G. Markossian, and G. F. Mkrtchian, Phys.Rev.A 84, 013418 (2011).
  39. H.K. Avetissian, A.G. Markossian, and G. F. Mkrtchian, Phys. Lett.A 375, 3699 (2011).
  40. G. Vampa, C.R. McDonald, G. Orlando, D.D. Klug, P.B. Corkum, and T. Brabec, Phys.Rev.Lett. 113, 073901 (2014).
  41. G. Vampa, C.R. McDonald, G. Orlando, P.B. Corkum, and T. Brabec, Phys.Rev.B 91, 064302 (2015).
  42. H.K. Avetissian, A.K. Avetissian, B.R. Avchyan, and G. F. Mkrtchian, Phys.Rev.B 100, 035434 (2019).

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2023