Inverse Magnetocaloric Effect in Mn5Si3 Compound
- Authors: Kuznetsov A.S.1, Mashirov A.V.1, Musabirov I.I.2, Mitsiuk V.I.3, Anikin M.S.4, Kamantsev A.P.1, Koledov V.V.1, Shavrov V.G.1
-
Affiliations:
- Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences
- Institute for Metals Superplasticity Problems, Russian Academy of Sciences
- Scientific–Practical Materials Research Centre, National Academy of Sciences of Belarus
- Ural Federal University Named after the First President of Russia B.N. Yeltsin
- Issue: Vol 68, No 4 (2023)
- Pages: 353-359
- Section: К 90-ЛЕТИЮ ВЛАДИМИРА ГРИГОРЬЕВИЧА ШАВРОВА
- URL: https://transsyst.ru/0033-8494/article/view/650543
- DOI: https://doi.org/10.31857/S0033849423040083
- EDN: https://elibrary.ru/PFSUEW
- ID: 650543
Cite item
Abstract
A direct method was used to study the magnetocaloric effect (MCE) for samples of the compound Mn5Si3 under adiabatic conditions in magnetic fields up to 2 T at cryogenic temperatures in the range from 25 to 125 K. According to the results of measurements, it is shown that at temperatures near the first-order metamagnetostructural phase transition from a noncollinear antiferromagnetic to a collinear antiferromagnetic state, both inverse and сonventional MCE are observed. The maximum value of the inverse MCE was ΔTad = –0.27 K at initial temperature T0 = 55 K in a magnetic field of 2 T. Conventional MCE with maximum value ΔTad = +0.23 K is observed at T0 = 70 K in a field of 2 T.
About the authors
A. S. Kuznetsov
Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences
Email: kuznetsovalserg@gmail.com
Moscow, 125009 Russia
A. V. Mashirov
Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences
Email: kuznetsovalserg@gmail.com
Moscow, 125009 Russia
I. I. Musabirov
Institute for Metals Superplasticity Problems, Russian Academy of Sciences
Email: kuznetsovalserg@gmail.com
Ufa, 450001 Russia
V. I. Mitsiuk
Scientific–Practical Materials Research Centre, National Academy of Sciences of Belarus
Email: kuznetsovalserg@gmail.com
Minsk, 220072 Belarus
M. S. Anikin
Ural Federal University Named after the First President of Russia B.N. Yeltsin
Email: kuznetsovalserg@gmail.com
Yekaterinburg, 620002 Russia
A. P. Kamantsev
Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences
Email: kuznetsovalserg@gmail.com
Moscow, 125009 Russia
V. V. Koledov
Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences
Email: kuznetsovalserg@gmail.com
Moscow, 125009 Russia
V. G. Shavrov
Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences
Author for correspondence.
Email: kuznetsovalserg@gmail.com
Moscow, 125009 Russia
References
- Tishin A.M., Spichkin Y.I. The Magnetocaloric Effect and its Applications. Bristol: Inst. of Phys. Publ., 2003. https://doi.org/10.1201/9781420033373
- Numazawaa T., Kamiya K., Utaki T., Matsumoto K. // Supercond. and Cryogenics. 2013. V. 15. P. 1. https://doi.org/10.9714/psac.2013.15.2.001
- Каманцев А.П., Амиров А.А., Кошкидько Ю.С. и др. // ФТТ. 2020. Т. 62. № 1. С. 117. https://doi.org/10.1134/S1063783420010151
- Konoplyuk S.M., Mashirov A.V., Kamantsev A.P. et al. // IEEE Trans. 2018. V. MAG-54. № 1. Article No. 2500204. https://doi.org/10.1109/TMAG.2017.2761322
- von Ranke P.J., de Oliveira N.A., Alho B.P. et al. // J. Phys.: Cond. Matt. 2009. V. 21. № 5. P. 056004. https://doi.org/10.1088/0953-8984/21/5/056004
- Krenke T., Duman E., Acet M. et al. // Nature Mater. 2005. V. 4. P. 450. https://doi.org/10.1038/nmat1395
- Han Z.D., Wang D.H., Zhang C.L. et al. // Appl. Phys. Lett. 2007. V. 90. № 4. P. 042507. https://doi.org/10.1063/1.2435593
- Krenke T., Duman E., Acet M. et al. // Phys. Rev. B. 2007. V. 75. № 10. P. 104414. https://doi.org/10.1103/PhysRevB.75.104414
- Batdalov A.B., Khanov L.N., Mashirov A.V. et al. // J. Appl. Phys. 2021. V. 129. № 12. P. 123901. https://doi.org/10.1063/5.0035280
- Chatterjee S., Giri S., Majumdar S., De S. K. // J. Phys. D: Appl. Phys. 2009. V. 42. № 6. Article No. 065001. https://doi.org/10.1088/0022-3727/42/6/065001
- Файзулин Р.Р., Маширов А.М., Бучельников В.Д. и др. // РЭ. 2016. Т.61. № 10. С.994. https://doi.org/10.7868/S0033849416100107
- Entel P., Sokolovskiy V.V., Buchelnikov V.D. et al. // J. Magn. Magn. Mater. 2015. V. 385. P. 193. https://doi.org/10.1016/j.jmmm.2015.03.003
- Vasiliev A.N., Heczko O., Volkova O.S. // J. Phys. D: Appl. Phys. 2010. V. 43. № 5. Article No. 055004. https://doi.org/10.1088/0022-3727/43/5/055004
- Dilmieva E.T., Koshkidko Y.S., Kamantsev A.P. et al. // IEEE Trans. 2017. V. MAG-53. № 11. Article No. 2503705. https://doi.org/10.1109/TMAG.2017.2702577
- Каманцев А.П., Коледов В.В., Маширов А.В. и др.// Изв. РАН. Сер. Физическая. 2014. Т. 78. № 9. С.1180. https://doi.org/10.7868/S0367676514090105
- Caron L., Miao X.F., P Klaasse J.C. et al. //. Appl. Phys. Lett. 2013. V. 103. № 11. P. 112404. https://doi.org/10.1063/1.4821197
- Tekgul A., Cakır O., Acet M. et al. // J. Appl. Phys. 2015. V. 118. № 15. P. 153903. https://doi.org/10.1063/1.4934253
- Tohei T., Wada H. // J. Appl. Phys. 2003. V. 94. № 3. P. 1800. https://doi.org/10.1063/1.1587265
- Cakır O., Acet M. // Appl. Phys. Lett. 2012. V. 100. № 20. P. 202404. https://doi.org/10.1063/1.4717181
- Dias E.T., Das A., Hoser A. et al. // J. Appl. Phys. 2018. V. 124. № 15. P. 153902. https://doi.org/10.1063/1.5050655
- Zhang H., Gimaev R., Kovalev B. et al. // Physics B: Cond. Matt. 2019. V. 558. P. 65. https://doi.org/10.1016/j.physb.2019.01.035
- Park J., Jeong S., Park I. // Cryogenics. 2015. V. 71. P. 82. https://doi.org/10.1016/j.cryogenics.2015.06.006
- Liu J., Gottschall T., Skokov K. P. et al. // Nature Mater. 2012. V. 11. P. 620. https://doi.org/10.1038/nmat3334
- Pecharsky V.K., Gschneidner K.A., Mudryk Ya., Paudyal D. // J. Magn. Magn. Mater. 2009. V. 321. P. 3541. https://doi.org/10.1016/j.jmmm.2008.03.013
- Guo D., Moreno-Ramirez L.M., Romero-Muniz C. et al. // Science China Mater. 2021. V. 64. № 11. P. 2846. https://doi.org/10.1007/s40843-021-1711-5
- Ren Q.Y., Hutchison W.D., Wand J.L. et al. // J. Alloys Compounds. 2017. V. 693. P. 32. https://doi.org/10.1016/j.jallcom.2016.09.169
- Lander G.H., Brown P.J., Forsyth J.B. // Proc. Phys. Soc. 1967. V. 91. № 2. P. 332. https://doi.org/10.1088/0370-1328/91/2/310
- Menshikov A.Z., Vokhmyanin A.P., Dorofeev Yu.A. // Phys. Status Solidi. B. 1990. V. 158. P. 319. https://doi.org/10.1002/pssb.2221580132
- Судакова Н.П., Кузнецов С.И., Михельсон А.В. и др. // Докл. АН СССР. 1976. Т. 228. № 3. С. 582.
- Luccas R.F., Sánchez-Santolino G., Correa-Orellana A. et al. // J. Magn. Magn. Mater. 2019. V. 489. Article No. 165451. https://doi.org/10.1016/j.jmmm.2019.165451
- Songlin D., Dagula W., Tegus O. et al. // J. Alloys Compounds. 2002. V. 334. № 1–2. P. 242. https://doi.org/10.1016/S0925-8388(01)01776-5
- Gottschilch M., Gourdon O., Persson J. et al. // J. Mater. Chem. 2012. V. 22. P. 15275. https://doi.org/10.1039/C2JM00154C
- Brown P.J., Forsyth J.B., Nunez V., Tasset F. // J. Phys.: Cond. Matt. 1992. V. 4. P. 10025. https://doi.org/10.1088/0953-8984/4/49/029
- Brown P.J., Forsyth J.B. // J. Phys.: Cond. Matt. 1995. V. 7. P. 7619. https://doi.org/10.1088/0953-8984/7/39/004
- Silva M.R., Brown P.J., Forsyth J.B. // J. Phys.: Cond. Matt. 2002. V. 14. P. 8707. https://doi.org/10.1088/0953-8984/14/37/307
- Koshkid’ko Yu.S., Ćwik J., Ivanova T.I. et al. // J. Magn. Magn. Mater. 2017. V. 433. P. 234. https://doi.org/10.1016/j.jmmm.2017.03.027
- Кузнецов А.С., Маширов А.В., Алиев А.М. и др. // ФММ. 2022. Т. 123. № 4. С. 425. https://doi.org/10.31857/S0015323022040076
- Leciejewicz J., Penc B., Szytula A. et al. // Acta Physica Polonica A. 2008. V. 113. № 4. P. 1193. https://doi.org/10.12693/APhysPolA.113.1193
- de Almeida D.M., Bormio-Nunes C., Nunes C.A. et al. // J. Magn. Magn. Mater. 2009. V. 321. P. 2578. https://doi.org/10.1016/j.jmmm.2009.03.067
- Al-Kanani H.J., Booth J.G. // J. Magn. Magn. Mater. 1995. V. 140. P. 1539. https://doi.org/10.1016/0304-8853(94)01157-5
- Das S.C., Pramanick S., Chatterjee S. // J. Magn. Magn. Mater. 2021. V. 529. Article No. 167909. https://doi.org/10.1016/j.jmmm.2021.167909
- Das S.C., Mandal K., Dutta P. et al. // Phys. Rev. B. 2019. V. 100. № 2. P. 024409. https://doi.org/10.1103/PhysRevB.100.024409
- Zheng X.Q., Xu Z.Y., Zhang B. et al. // J. Magn. Magn. Mater. 2017. V. 421. P. 448. https://doi.org/10.1016/j.jmmm.2016.08.048
- Rajivgandhi R., Arout Chelvane J., Nigam A.K. et al. // J. Alloys. Compounds. 2020. V. 815. Article No. 152659. https://doi.org/10.1016/j.jallcom.2019.152659
- Kamantsev A.P., Koshkid’ko Yu.S, Taskaev S.V. et al. // J. Supercond. Novel Magn. 2022. V. 35. № 8. P. 2181. https://doi.org/10.1007/s10948-022-06336-z
- Андреенко А.С., Белов К.П., Никитин С.А., Тишин А.М. // Успехи физ. наук. 1989. Т. 158. № 4. С. 553.
- Biniskos N., Schmalzl K., Raymond S. et al. // Phys. Rev. Lett. 2018. V. 120. № 25. P. 257205. https://doi.org/10.1103/PhysRevLett.120.257205
- Pecharsky V.K., Gschneidner K.A. // J. Appl. Phys. 1999. V. 86. № 1. P. 565. https://doi.org/10.1063/1.370767
- Tegus O., Bruck E., Zhang L. et al. // Physics B: Cond. Matt. 2022. V. 319. P. 174. https://doi.org/10.1016/S0921-4526(02)01119-5
Supplementary files
