Обратный магнитокалорический эффект в соединении Mn5Si3

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Прямым методом проведены исследования магнитокалорического эффекта (МКЭ) для образцов соединения Mn5Si3 в адиабатических условиях в магнитных полях до 2 Тл при криогенных температурах в диапазоне от 25 до 125 K. По результатам измерений показано, что при температурах вблизи метамагнитоструктурного фазового перехода 1-го рода из неколлинеарного антиферромагнитного в коллинеарное антиферромагнитное состояние наблюдаются как обратный, так и прямой МКЭ. Максимальное значение обратного МКЭ составило ∆Tad = –0.27 K при начальной температуре T0 = 55 K в магнитном поле 2 Тл. Прямой МКЭ с максимальным значением ∆Tad = +0.23 K наблюдается при T0 = 70 K в поле 2 Тл.

Об авторах

А. С. Кузнецов

Институт радиотехники и электроники им. В.А. Котельникова РАН

Email: kuznetsovalserg@gmail.com
Российская Федерация, 125009, Москва, ул. Моховая, 11, корп. 7

А. В. Маширов

Институт радиотехники и электроники им. В.А. Котельникова РАН

Email: kuznetsovalserg@gmail.com
Российская Федерация, 125009, Москва, ул. Моховая, 11, корп. 7

И. И. Мусабиров

Институт проблем сверхпластичности металлов РАН

Email: kuznetsovalserg@gmail.com
Российская Федерация, 450001, Уфа, ул. Степана Халтурина, 39

В. И. Митюк

Научно-практический центр НАН Беларуси по материаловедению

Email: kuznetsovalserg@gmail.com
Республика Беларусь, Минск

М. С. Аникин

Уральский федеральный университет

Email: kuznetsovalserg@gmail.com
Российская Федерация, 620075, Екатеринбург, просп. Ленина, 51

А. П. Каманцев

Институт радиотехники и электроники им. В.А. Котельникова РАН

Email: kuznetsovalserg@gmail.com
Российская Федерация, 125009, Москва, ул. Моховая, 11, корп. 7

В. В. Коледов

Институт радиотехники и электроники им. В.А. Котельникова РАН

Email: kuznetsovalserg@gmail.com
Российская Федерация, 125009, Москва, ул. Моховая, 11, корп. 7

В. Г. Шавров

Институт радиотехники и электроники им. В.А. Котельникова РАН

Автор, ответственный за переписку.
Email: kuznetsovalserg@gmail.com
Российская Федерация, 125009, Москва, ул. Моховая, 11, корп. 7

Список литературы

  1. Tishin A.M., Spichkin Y.I. The Magnetocaloric Effect and its Applications. Bristol: Inst. of Phys. Publ., 2003. https://doi.org/10.1201/9781420033373
  2. Numazawaa T., Kamiya K., Utaki T., Matsumoto K. // Supercond. and Cryogenics. 2013. V. 15. P. 1. https://doi.org/10.9714/psac.2013.15.2.001
  3. Каманцев А.П., Амиров А.А., Кошкидько Ю.С. и др. // ФТТ. 2020. Т. 62. № 1. С. 117. https://doi.org/10.1134/S1063783420010151
  4. Konoplyuk S.M., Mashirov A.V., Kamantsev A.P. et al. // IEEE Trans. 2018. V. MAG-54. № 1. Article No. 2500204. https://doi.org/10.1109/TMAG.2017.2761322
  5. von Ranke P.J., de Oliveira N.A., Alho B.P. et al. // J. Phys.: Cond. Matt. 2009. V. 21. № 5. P. 056004. https://doi.org/10.1088/0953-8984/21/5/056004
  6. Krenke T., Duman E., Acet M. et al. // Nature Mater. 2005. V. 4. P. 450. https://doi.org/10.1038/nmat1395
  7. Han Z.D., Wang D.H., Zhang C.L. et al. // Appl. Phys. Lett. 2007. V. 90. № 4. P. 042507. https://doi.org/10.1063/1.2435593
  8. Krenke T., Duman E., Acet M. et al. // Phys. Rev. B. 2007. V. 75. № 10. P. 104414. https://doi.org/10.1103/PhysRevB.75.104414
  9. Batdalov A.B., Khanov L.N., Mashirov A.V. et al. // J. Appl. Phys. 2021. V. 129. № 12. P. 123901. https://doi.org/10.1063/5.0035280
  10. Chatterjee S., Giri S., Majumdar S., De S. K. // J. Phys. D: Appl. Phys. 2009. V. 42. № 6. Article No. 065001. https://doi.org/10.1088/0022-3727/42/6/065001
  11. Файзулин Р.Р., Маширов А.М., Бучельников В.Д. и др. // РЭ. 2016. Т.61. № 10. С.994. https://doi.org/10.7868/S0033849416100107
  12. Entel P., Sokolovskiy V.V., Buchelnikov V.D. et al. // J. Magn. Magn. Mater. 2015. V. 385. P. 193. https://doi.org/10.1016/j.jmmm.2015.03.003
  13. Vasiliev A.N., Heczko O., Volkova O.S. // J. Phys. D: Appl. Phys. 2010. V. 43. № 5. Article No. 055004. https://doi.org/10.1088/0022-3727/43/5/055004
  14. Dilmieva E.T., Koshkidko Y.S., Kamantsev A.P. et al. // IEEE Trans. 2017. V. MAG-53. № 11. Article No. 2503705. https://doi.org/10.1109/TMAG.2017.2702577
  15. Каманцев А.П., Коледов В.В., Маширов А.В. и др.// Изв. РАН. Сер. Физическая. 2014. Т. 78. № 9. С.1180. https://doi.org/10.7868/S0367676514090105
  16. Caron L., Miao X.F., P Klaasse J.C. et al. //. Appl. Phys. Lett. 2013. V. 103. № 11. P. 112404. https://doi.org/10.1063/1.4821197
  17. Tekgul A., Cakır O., Acet M. et al. // J. Appl. Phys. 2015. V. 118. № 15. P. 153903. https://doi.org/10.1063/1.4934253
  18. Tohei T., Wada H. // J. Appl. Phys. 2003. V. 94. № 3. P. 1800. https://doi.org/10.1063/1.1587265
  19. Cakır O., Acet M. // Appl. Phys. Lett. 2012. V. 100. № 20. P. 202404. https://doi.org/10.1063/1.4717181
  20. Dias E.T., Das A., Hoser A. et al. // J. Appl. Phys. 2018. V. 124. № 15. P. 153902. https://doi.org/10.1063/1.5050655
  21. Zhang H., Gimaev R., Kovalev B. et al. // Physics B: Cond. Matt. 2019. V. 558. P. 65. https://doi.org/10.1016/j.physb.2019.01.035
  22. Park J., Jeong S., Park I. // Cryogenics. 2015. V. 71. P. 82. https://doi.org/10.1016/j.cryogenics.2015.06.006
  23. Liu J., Gottschall T., Skokov K. P. et al. // Nature Mater. 2012. V. 11. P. 620. https://doi.org/10.1038/nmat3334
  24. Pecharsky V.K., Gschneidner K.A., Mudryk Ya., Paudyal D. // J. Magn. Magn. Mater. 2009. V. 321. P. 3541. https://doi.org/10.1016/j.jmmm.2008.03.013
  25. Guo D., Moreno-Ramirez L.M., Romero-Muniz C. et al. // Science China Mater. 2021. V. 64. № 11. P. 2846. https://doi.org/10.1007/s40843-021-1711-5
  26. Ren Q.Y., Hutchison W.D., Wand J.L. et al. // J. Alloys Compounds. 2017. V. 693. P. 32. https://doi.org/10.1016/j.jallcom.2016.09.169
  27. Lander G.H., Brown P.J., Forsyth J.B. // Proc. Phys. Soc. 1967. V. 91. № 2. P. 332. https://doi.org/10.1088/0370-1328/91/2/310
  28. Menshikov A.Z., Vokhmyanin A.P., Dorofeev Yu.A. // Phys. Status Solidi. B. 1990. V. 158. P. 319. https://doi.org/10.1002/pssb.2221580132
  29. Судакова Н.П., Кузнецов С.И., Михельсон А.В. и др. // Докл. АН СССР. 1976. Т. 228. № 3. С. 582.
  30. Luccas R.F., Sánchez-Santolino G., Correa-Orellana A. et al. // J. Magn. Magn. Mater. 2019. V. 489. Article No. 165451. https://doi.org/10.1016/j.jmmm.2019.165451
  31. Songlin D., Dagula W., Tegus O. et al. // J. Alloys Compounds. 2002. V. 334. № 1–2. P. 242. https://doi.org/10.1016/S0925-8388(01)01776-5
  32. Gottschilch M., Gourdon O., Persson J. et al. // J. Mater. Chem. 2012. V. 22. P. 15275. https://doi.org/10.1039/C2JM00154C
  33. Brown P.J., Forsyth J.B., Nunez V., Tasset F. // J. Phys.: Cond. Matt. 1992. V. 4. P. 10025. https://doi.org/10.1088/0953-8984/4/49/029
  34. Brown P.J., Forsyth J.B. // J. Phys.: Cond. Matt. 1995. V. 7. P. 7619. https://doi.org/10.1088/0953-8984/7/39/004
  35. Silva M.R., Brown P.J., Forsyth J.B. // J. Phys.: Cond. Matt. 2002. V. 14. P. 8707. https://doi.org/10.1088/0953-8984/14/37/307
  36. Koshkid’ko Yu.S., Ćwik J., Ivanova T.I. et al. // J. Magn. Magn. Mater. 2017. V. 433. P. 234. https://doi.org/10.1016/j.jmmm.2017.03.027
  37. Кузнецов А.С., Маширов А.В., Алиев А.М. и др. // ФММ. 2022. Т. 123. № 4. С. 425. https://doi.org/10.31857/S0015323022040076
  38. Leciejewicz J., Penc B., Szytula A. et al. // Acta Physica Polonica A. 2008. V. 113. № 4. P. 1193. https://doi.org/10.12693/APhysPolA.113.1193
  39. de Almeida D.M., Bormio-Nunes C., Nunes C.A. et al. // J. Magn. Magn. Mater. 2009. V. 321. P. 2578. https://doi.org/10.1016/j.jmmm.2009.03.067
  40. Al-Kanani H.J., Booth J.G. // J. Magn. Magn. Mater. 1995. V. 140. P. 1539. https://doi.org/10.1016/0304-8853(94)01157-5
  41. Das S.C., Pramanick S., Chatterjee S. // J. Magn. Magn. Mater. 2021. V. 529. Article No. 167909. https://doi.org/10.1016/j.jmmm.2021.167909
  42. Das S.C., Mandal K., Dutta P. et al. // Phys. Rev. B. 2019. V. 100. № 2. P. 024409. https://doi.org/10.1103/PhysRevB.100.024409
  43. Zheng X.Q., Xu Z.Y., Zhang B. et al. // J. Magn. Magn. Mater. 2017. V. 421. P. 448. https://doi.org/10.1016/j.jmmm.2016.08.048
  44. Rajivgandhi R., Arout Chelvane J., Nigam A.K. et al. // J. Alloys. Compounds. 2020. V. 815. Article No. 152659. https://doi.org/10.1016/j.jallcom.2019.152659
  45. Kamantsev A.P., Koshkid’ko Yu.S, Taskaev S.V. et al. // J. Supercond. Novel Magn. 2022. V. 35. № 8. P. 2181. https://doi.org/10.1007/s10948-022-06336-z
  46. Андреенко А.С., Белов К.П., Никитин С.А., Тишин А.М. // Успехи физ. наук. 1989. Т. 158. № 4. С. 553.
  47. Biniskos N., Schmalzl K., Raymond S. et al. // Phys. Rev. Lett. 2018. V. 120. № 25. P. 257205. https://doi.org/10.1103/PhysRevLett.120.257205
  48. Pecharsky V.K., Gschneidner K.A. // J. Appl. Phys. 1999. V. 86. № 1. P. 565. https://doi.org/10.1063/1.370767
  49. Tegus O., Bruck E., Zhang L. et al. // Physics B: Cond. Matt. 2022. V. 319. P. 174. https://doi.org/10.1016/S0921-4526(02)01119-5

Дополнительные файлы


© А.С. Кузнецов, А.В. Маширов, И.И. Мусабиров, В.И. Митюк, М.С. Аникин, А.П. Каманцев, В.В. Коледов, В.Г. Шавров, 2023