Зависимость конверсии циклогексана в н-гексан на нанесенных катализаторах Rh/CeXZr1–xO2 от состава носителя
- Authors: Картавова К.Е.1,2, Байер Е.В.1,2, Машкин М.Ю.1,2, Капустин Г.Б.2, Мишин И.В.2, Калмыков К.Б.1, Кустов Л.М.1,2, Кустов А.Л.1,2
-
Affiliations:
- Московский государственный университет им. М.В. Ломоносова
- Институт органической химии им. Н.Д. Зелинского РАН
- Issue: Vol 65, No 1 (2025)
- Pages: 67-74
- Section: Articles
- URL: https://transsyst.ru/0028-2421/article/view/683055
- DOI: https://doi.org/10.31857/S0028242125010062
- EDN: https://elibrary.ru/LKNFSG
- ID: 683055
Cite item
Abstract
Исследована серия образцов катализаторов 1Rh/CexZr1–xO2, где x = 0–1 в реакции гидроконверсии циклогексана в н-гексан. Образцы носителей и катализаторов изучены рядом физико-химических методов: низкотемпературная адсорбция–десорбция азота, взаимодополняющие методы сканирующей электронной микроскопии (СЭМ) и рентгеноспектрального микроанализа (РСМА), рентгенофазовый анализ (РФА), а также оценена их каталитическая активность. Достигнута производительность по н-гексану до 8,3 ммольн-гексана гкатализатора−1 ч−1 при 300°C и селективность по н-гексану до 77% при 275°C на образце 1Rh/ZrO2.1
Full Text

About the authors
Кристина Евгеньевна Картавова
Московский государственный университет им. М.В. Ломоносова; Институт органической химии им. Н.Д. Зелинского РАН
Author for correspondence.
Email: lmk@ioc.ac.ru
ORCID iD: 0009-0000-1491-2586
химический факультет
Russian Federation, Москва; МоскваЕвгений Вячеславович Байер
Московский государственный университет им. М.В. Ломоносова; Институт органической химии им. Н.Д. Зелинского РАН
Email: lmk@ioc.ac.ru
ORCID iD: 0009-0009-9358-9769
химический факультет
Russian Federation, Москва; МоскваМихаил Юрьевич Машкин
Московский государственный университет им. М.В. Ломоносова; Институт органической химии им. Н.Д. Зелинского РАН
Email: lmk@ioc.ac.ru
ORCID iD: 0000-0001-5760-1796
химический факультет
Russian Federation, Москва; МоскваГеннадий Борисович Капустин
Институт органической химии им. Н.Д. Зелинского РАН
Email: lmk@ioc.ac.ru
ORCID iD: 0000-0002-2010-6617
Russian Federation, Москва
Игорь Владимирович Мишин
Институт органической химии им. Н.Д. Зелинского РАН
Email: lmk@ioc.ac.ru
ORCID iD: 0000-0002-4192-650X
Russian Federation, Москва
Константин Борисович Калмыков
Московский государственный университет им. М.В. Ломоносова
Email: lmk@ioc.ac.ru
ORCID iD: 0000-0002-1616-6975
химический факультет
Russian Federation, МоскваЛеонид Модестович Кустов
Московский государственный университет им. М.В. Ломоносова; Институт органической химии им. Н.Д. Зелинского РАН
Email: lmk@ioc.ac.ru
ORCID iD: 0000-0003-2312-3583
химический факультет
Russian Federation, Москва; МоскваАлександр Леонидович Кустов
Московский государственный университет им. М.В. Ломоносова; Институт органической химии им. Н.Д. Зелинского РАН
Email: lmk@ioc.ac.ru
ORCID iD: 0000-0003-0869-8784
Russian Federation, Москва; Москва
References
- Kartavova K.E., Mashkin M.Y., Kostin M.Y., Finashina E.D., Kalmykov K.B., Kapustin G.I., Pribytkov P.V., Tkachenko O.P., Mishin I.V., Kustov L.M., Kustov A.L. Rhodium-based catalysts: an impact of the support nature on the catalytic cyclohexane ring opening // Nanomaterials. 2023. V. 13. № 936. P. 1–19. https://doi.org/10.3390/nano13050936
- Moraes R., Thomas K., Thomas S., Van Donk S., Grasso G., Gilson J.P., Houalla M. Ring opening of decalin and methylcyclohexane over alumina-based monofunctional WO3/Al2O3 and Ir/Al2O3 catalysts // J. of Catalysis. 2012. V. 286. P. 62–77. https://doi.org/10.1016/j.jcat.2011.10.014
- Guan C., Zhai J., Han D. Cetane number prediction for hydrocarbons from molecular structural descriptors based on active subspace methodology // Fuel. 2019. V. 249. P. 1–7. https://doi.org/10.1016/j.fuel.2019.03.092
- Wei Y.J., Zhang Y.J., Zhu X.D., Gu H.M., Zhu Z.Q., Liu S.H., Sun X.Y., Jiang X.L. Effects of diesel hydrocarbon components on cetane number and engine combustion and emission characteristics. // Applied Sciences. 2022. V. 12. P. 1–17. https://doi.org/10.3390/app12073549
- Masloboishchikova O.V., Vasina T.V., Khelkovskaya-Sergeeva E.G., Kustov L.M., Zeuthen P. Cyclohexane transformations over metal oxide catalysts. 1. Effect of the nature of metal and support on the catalytic activity in cyclohexane ring opening // Russ. Chem. Bull. 2002. V. 51. P. 237–241.
- Vasina T.V., Masloboishchikova O.V., Khelkovskaya-Sergeeva E.G., Kustov L.M., Zeuthen P.. Cyclohexane transformations over metal oxide catalysts. 2. Selective cyclohexane ring opening to form n-hexane over mono- and bimetallic rhodium catalysts // Russ. Chem. Bull. 2002. V. 51. P. 242–245.
- Kustov L.M., Stakheev A.Y., Vasina T.V., Masloboishchikova O.V., Khelkovskaya-Sergeeva E.G., Zeuthen P. Dual-function Catalysts for Ring opening of cyclic Compounds. Elsevier Masson SAS, 2001. P. 307–314. https://doi.org/10.1016/s0167-2991(01)80043-4
- McVicker G.B., Daage M., Touvelle M.S., Hudson C.W., Klein D.P., Baird W.C., Cook B.R., Chen J.G., Hantzer S., Vaughan D.E.W., Ellis E.S., Feeley O.C. Selective ring opening of naphthenic molecules // J. of Catalysis. 2002. V. 210. P. 137–148. https://doi.org/10.1006/jcat.2002.3685
- Blanco E., Piccolo L., Laurenti D., di Felice L., Catherin N., Lorentz C., Geantet C., Calemma V. Effect of H2S on the mechanisms of naphthene ring opening and isomerization over Ir/NaY: A comparative study of decalin, perhydroindan and butylcyclohexane hydroconversions // Applied Catalysis A: General. 2018. V. 550. P. 274–283. https://doi.org/10.1016/j.apcata.2017.11.020
- Vicerich M.A., Benitez V.M., Especel C., Epron F., Pieck C.L. Influence of iridium content on the behavior of Pt-Ir/Al2O3 and Pt-Ir/TiO2 catalysts for selective ring opening of naphthenes // Applied Catalysis A: General. 2013. V. 453. P. 167–174. https://doi.org/10.1016/j.apcata.2012.12.015.
- Zhu X., Zhou Q., Xia Y., Wang J., Chen H., Xu Q., Liu J., Feng W., Chen S. Preparation and characterization of Cu-doped TiO2 nanomaterials with anatase/rutile/brookite triphasic structure and their photocatalytic activity // J. of Materials Science: Materials in Electronics. 2021. V. 32. P. 21511–21524. https://doi.org/10.1007/s10854-021-06660-5
- Zhu X., Wang J., Yang D., Liu J., He L., Tang M., Feng W., Wu X. Fabrication, characterization and high photocatalytic activity of Ag-ZnO heterojunctions under UV-visible light // RSC Advances. 2021. V. 11. P. 27257–27266. https://doi.org/10.1039/d1ra05060e
- Mouli K.C., Choudhary O., Soni K., Dalai A.K. Improvement of cetane number of LGO by ring opening of naphthenes on Pt/Al-SBA-15 catalysts // Catalysis Today. 2012. V. 198. P. 69–76. https://doi.org/10.1016/j.cattod.2012.01.027
- Kubička DKumar., N., Mäki-Arvela P., Tiitta M., Niemi V., Salmi T., Murzin D.Y. Ring opening of decalin over zeolites: I. Activity and selectivity of proton-form zeolites // J. of Catalysis. 2004. V. 222. P. 65–79. https://doi.org/10.1016/j.jcat.2003.10.027
- Corma A., González-Alfaro V., Orchillés A.V. Decalin and tetralin as probe molecules for cracking and hydrotreating the light cycle oil // J. of Catalysis. 2001. V. 200. P. 34–44. https://doi.org/10.1006/jcat.2001.3181
- Mostad H.B., Riis T.U., Ellestad O.H. Catalytic cracking of naphthenes and naphtheno-aromatics in fixed bed micro reactors // Applied Catalysis. 1990. V. 63. P. 345–364. https://doi.org/10.1016/S0166-9834(00)81724-8
- Mostad H.B., Riis T.U., Ellestad O.H. Shape selectivity in Y-zeolites. Catalytic cracking of decalin-isomers in fixed bed micro reactors // Applied Catalysis. 1990. V. 58. P. 105–117. https://doi.org/10.1016/S0166-9834(00)82281-2
- Kartavova K.E., Mashkin Yu.M., Kalmykov K.B., Kapustin G.I., Tkachenko O.P., Mishin I.V., Dunaev S.F., Kustov A.L. Influence of the nature of promoted zirconium supports on the catalytic behavior of Rh-based catalysts in the reaction of cyclohexane ring opening to n-hexane // Russ. J. of Physic. Chemistry A. 2024. V. 98. P. 543–551. https://doi.org/10.1134/S0036024424040125
- Wan J., Lin J., Guo X., Wang T., Zhou R. Morphology effect on the structure-activity relationship of Rh/CeO2–ZrO2 catalysts // Chem. Engineering J. 2019. V. 368. P. 719–729. https://doi.org/10.1016/j.cej.2019.03.016
- Orlik S.N., Struzhko V.L., Mironyuk T.V., Tel’biz G.M. Effect of Acidity of the surface on the activity of rhodium promoted zirconium oxide catalysts in the reduction of NO by hydrocarbons // Theor. and Exper. Chemistry. 2001. V. 37. P. 311–314. https://doi.org/10.1023/A:1013863117597
- Thommes M., Kaneko K., Neimark A.V., Olivier J.P., Rodriguez-Reinoso F., Rouquerol J., Sing K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) // Pure and Applied Chemistry. 2015. V. 87. P. 1051–1069. https://doi.org/10.1515/pac-2014-1117
- Patterson A.L. The Scherrer formula for X-ray particle size determination // Phys. Review. 1939. V. 56. P. 978–982. https://doi.org/10.1103/PhysRev.56.978
Supplementary files

Note
1 Дополнительные материалы доступны в электронном виде по DOI статьи: 10.31857/S0028242125010062