A group of new hypermethylated long non-coding RNA genes associated with the development and progression of breast cancer

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Breast cancer is the most common type of cancer among women. The study of the mechanisms of metastasis, the main cause of death from breast cancer, as well as the search for new markers for early diagnosis and prognosis of breast cancer is an extremely topical issue. New perspectives in the diagnosis and treatment of breast cancer are opened by the mechanisms of gene regulation involving non-coding RNAs, in particular, long non-coding RNAs (lncRNAs). In this work, we analyzed the methylation level of seven lncRNA genes (MEG3, SEMA3B-AS1, HAND2-AS1, KCNK15-AS1, ZNF667-AS1, MAGI2-AS3, and PLUT) by quantitative methyl-specific PCR on a set of 79 paired (tumor/normal) samples breast cancer. Hypermethylation of all seven lncRNA genes was revealed, and hypermethylation of HAND2-AS1, KCNK15-AS1, MAGI2-AS3 and PLUT was detected by us in breast cancer for the first time. It was found that the level of methylation of the studied lncRNA genes correlated statistically significantly with the stage of the tumor process, the size of the tumor, and the presence of metastases in the lymph nodes. Thus, methylation of the seven studied lncRNA genes is associated with the development and progression of breast cancer, and these genes can be useful as potential markers in the diagnosis and prognosis of breast cancer.

Full Text

Restricted Access

About the authors

E. A. Filippova

Institute of General Pathology and Pathophysiology

Author for correspondence.
Email: p.lenyxa@yandex.ru
Russian Federation, Moscow, 125315

V. I. Loginov

Institute of General Pathology and Pathophysiology

Email: p.lenyxa@yandex.ru
Russian Federation, Moscow, 125315

S. S. Lukina

Institute of General Pathology and Pathophysiology

Email: p.lenyxa@yandex.ru
Russian Federation, Moscow, 125315

A. M. Burdennyy

Institute of General Pathology and Pathophysiology

Email: p.lenyxa@yandex.ru
Russian Federation, Moscow, 125315

I. V. Pronina

Institute of General Pathology and Pathophysiology

Email: p.lenyxa@yandex.ru
Russian Federation, Moscow, 125315

T. P. Kazubskaya

Blokhin National Medical Research Center of Oncology

Email: p.lenyxa@yandex.ru
Russian Federation, Moscow, 115478

E. A. Braga

Institute of General Pathology and Pathophysiology

Email: p.lenyxa@yandex.ru
Russian Federation, Moscow, 125315

References

  1. Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. (2021) Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71(3), 209‒249. doi: 10.3322/caac.21660
  2. Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumours. Nature. 490(7418), 61‒70. doi: 10.1038/nature11412
  3. Cuzick J. (2017) Preventive therapy for cancer. Lancet Oncol. 18(8), 472‒482. doi: 10.1016/S1470-2045(17)30536-3
  4. Harbeck N., Gnant M. (2017) Breast cancer. Lancet. 389(10074), 1134‒1150. doi: 10.1016/S0140-6736(16)31891-8
  5. Rahman M.M., Brane A.C., Tollefsbol T.O. (2019) MicroRNAs and epigenetics strategies to reverse breast cancer. Cells. 8(10), 1214. doi: 10.3390/cells8101214
  6. Sharma S., Kelly T.K., Jones P.A. (2010) Epigenetics in cancer. Carcinogenesis. 31(1), 27‒36. doi: 10.1093/carcin/bgp220
  7. Rose M., Kloten V., Noetzel E., Gola L., Ehling J., Heide T., Meurer S.K., Gaiko-Shcherbak A., Sechi A.S., Huth S., Weiskirchen R., Klaas O., Antonopoulos W., Lin Q, Wagner W., Veeck J., Gremse F., Steitz J., Knüchel R., Dahl E. (2017) ITIH5 mediates epigenetic reprogramming of breast cancer cells. Mol. Cancer. 16(1), 44. doi: 10.1186/s12943-017-0610-2
  8. Jeong G.Y., Park M.K., Choi H.J., An H.W., Park Y.U., Choi H.J., Park J., Kim H.Y., Son T., Lee H., Min K.W., Oh Y.H., Lee J.Y., Kong G. (2021) NSD3-Induced methylation of H3K36 activates NOTCH signaling to drive breast tumor initiation and metastatic progression. Cancer Res. 81(1), 77‒90. doi: 10.1158/0008-5472.CAN-20-0360
  9. Klinge C.M. (2018) Non-coding RNAs: long non-coding RNAs and microRNAs in endocrine-related cancers. Endocr. Relat. Cancer. 25(4), 259‒282. doi: 10.1530/ERC-17-0548
  10. Venkatesh J., Wasson M.D., Brown J.M., Fernando W., Marcato P. (2021) LncRNA-miRNA axes in breast cancer: Novel points of interaction for strategic attack. Cancer Lett. 509, 81‒88. doi: 10.1016/j.canlet.2021.04.002
  11. Fazal F.M., Chang H.Y. (2016) lncRNA structure: message to the heart. Mol. Cell. 64(1), 1‒2. doi: 10.1016/j.molcel.2016.09.030
  12. Kim J., Piao H.L., Kim B.J., Yao F., Han Z., Wang Y., Xiao Z., Siverly A.N., Lawhon S.E., Ton B.N., Lee H., Zhou Z., Gan B., Nakagawa S., Ellis M.J., Liang H., Hung M.C., You M.J., Sun Y., Ma L. (2018) Lo . J. Cancer. 108(12), 2419‒2425. doi: 10.1038/bjc.2013.233
  13. Huang J., Zhang S.Y., Gao Y.M., Liu Y.F., Liu Y.B., Zhao Z.G., Yang K. (2014) MicroRNAs as oncogenes or tumour suppressors in oesophageal cancer: potential biomarkers and therapeutic targets. Cell Prolif. 47(4), 277‒286. doi: 10.1111/cpr.12109
  14. Union for International Cancer Control (UICC) (2017) TNM Classification of Malignant Tumours. Eds Brierley J.D., Gospodarowicz M.K., Wittekind C. Oxford, UK: John Wiley and Sons, 241 p.
  15. World Medical Association (2013) World Medical Association declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 310(20), 2191‒2194. doi: 10.1001/jama.2013.281053
  16. Loginov V.I., Pronina I.V., Filippova E.A., Burdennyy A.M., Lukina S.S., Kazubskaya T.P., Uroshlev L.A., Fridman M.V., Brovkina O.I., Apanovich N.V., Karpukhin A.V., Stilidi I.S., Kushlinskii N.E., Dmitriev A.A., Braga E.A. (2022) Aberrant methylation of 20 miRNA genes specifically involved in various steps of ovarian carcinoma spread: from primary tumors to peritoneal macroscopic metastases. Int. J. Mol. Sci. 23(3), 1300. doi: 10.3390/ijms23031300
  17. Hattermann K., Mehdorn H.M., Mentlein R., Schultka S., Held-Feindt J. (2008) A methylation-specific and SYBR-green-based quantitative polymerase chain reaction technique for O6-methylguanine DNA methyltransferase promoter methylation analysis. Anal. Biochem. 377(1), 62‒71. doi: 10.1016/j.ab.2008.03.014
  18. Selezneva A.D., Filippova E.A., Selezneva A.D., Lukina S.S., Pronina I.V., Ivanova N.A., Kazubskaya T.P., Burdennyy A.M., Braga E.A., Loginov V.I. (2022) Hypermethylation of long non-coding RNA genes group in the breast cancer development and progression. Bull. Exp. Biol. Med. 173(6), 765‒769. doi: 10.1007/s10517-022-05627-8
  19. Vrba L., Futscher B.W. (2017) Epigenetic silencing of MORT is an early event in cancer and is associated with luminal, receptor positive breast tumor subtypes. J. Breast Cancer. 20(2), 198‒202. doi: 10.4048/jbc.2017.20.2.198
  20. Di Fiore R., Suleiman S., Drago-Ferrante R., Felix A., OꞌToole S.A., OꞌLeary J.J., Ward M.P., Beirne J., Yordanov A., Vasileva-Slaveva M., Subbannayya Y., Pentimalli F., Giordano A., Calleja-Agius J. (2021) LncRNA MORT (ZNF667-AS1) in cancer-is there a possible role in gynecological malignancies? Int. J. Mol. Sci. 22(15), 7829. doi: 10.3390/ijms22157829
  21. Li H., Wang P., Liu J., Liu W., Wu X., Ding J., Kang J., Li J., Lu J., Pan G. (2020) Hypermethylation of lncRNA MEG3 impairs chemosensitivity of breast cancer cells. J. Clin. Lab. Anal. 34(9), e23369. doi: 10.1002/jcla.23369
  22. Burdennyy A.M., Filippova E.A., Ivanova N.A., Lukina S.S., Pronina I.V., Loginov V.I., Fridman M.V., Kazubskaya T.P., Utkin D.O., Braga E.A., Kushlinskii N.E. (2021) Hypermethylation of genes in new long noncoding RNA in ovarian tumors and metastases: a dual effect. Bull. Exp. Biol. Med. 171(3), 370–374. doi: 10.1007/s10517-021-05230-3
  23. Hu J., Huang H., Xi Z., Ma S., Ming J., Dong F., Guo H., Zhang H., Zhao E., Yao G., Yang L., Zhang F., Zheng W., Chen H., Huang T., Li L. (2022) LncRNA SEMA3B-AS1 inhibits breast cancer progression by targeting miR-3940/KLLN axis. Cell Death Dis. 13(9), 800. doi: 10.1038/s41419-022-05189-7
  24. Yu C., Chen W., Cai Y., Du M., Zong D., Qian L., Jiang X., Zhu H. (2022) The lncRNA ZNF667-AS1 inhibits propagation, invasion, and angiogenesis of gastric cancer by silencing the expression of N-cadherin and VEGFA. J. Oncol. 2022–3579547. doi: 10.1155/2022/3579547
  25. Yang X., Wang C.C., Lee W.Y.W., Trovik J., Chung T.K.H, Kwong J. (2018) Long non-coding RNA HAND2-AS1 inhibits invasion and metastasis in endometrioid endometrial carcinoma through inactivating neuromedin U. Cancer Lett. 28(413), 23–34. doi: 10.1016/j.canlet.2017.10.028
  26. Gokulnath P., de Cristofaro T., Manipur I., Di Palma T., Soriano A.A., Guarracino M.R., Zannini M. (2020) Long non-coding RNA HAND2-AS1 acts as a tumor suppressor in high-grade serous ovarian carcinoma. Int. J. Mol. Sci. 21(11), 4059. doi: 10.3390/ijms21114059
  27. Zhang H., Zhang Z., Wang D. (2019) Epigenetic regulation of lncRNA KCNKI5-ASI in gastric cancer. Cancer Manag. Res. 11, 8589–8602. doi: 10.2147/CMAR.S186002
  28. Wang J., Yang C., Cao H., Yang J., Meng W., Yu M., Yu L., Wang B. (2023) Hypermethylation-mediated lncRNA MAGI2-as3 downregulation facilitates malignant progression of laryngeal squamous cell carcinoma via interacting with SPT6. Cell Transplant. 32, 9636897231154574. doi: 10.1177/09636897231154574
  29. Kim-Wanner S.Z., Assenov Y., Nair M.B., Weichenhan D., Benner A., Becker N., Landwehr K., Kuner R., Sültmann H., Esteller M., Koch I., Lindner M., Meister M., Thomas M., Bieg M., Klingmüller U., Schlesner M., Warth A., Brors B., Seifried E., Bönig H., Plass C., Risch A., Muley T. (2020) Genome-wide DNA methylation profiling in early stage I lung adenocarcinoma reveals predictive aberrant methylation in the promoter region of the long noncoding RNA PLUT: an exploratory study. J. Thorac. Oncol. 15(8), 1338–1350. doi: 10.1016/j.jtho.2020.03.023
  30. Al-Rugeebah A., Alanazi M., Parine N.R. (2019) MEG3: an oncogenic long non-coding RNA in different cancers. Pathol. Oncol. Res. 25(3), 859–874. doi: 10.1007/s12253-019-00614-3
  31. Zhang W., Shi S., Jiang J., Li X., Lu H., Ren F. (2017) LncRNA MEG3 inhibits cell epithelial-mesenchymal transition by sponging miR-421 targeting E-cadherin in breast cancer. Biomed. Pharmacother. 91, 312–319. doi: 10.1016/j.biopha.2017.04.085
  32. Zhang L., Liang X., Li Y. (2017) Long non-coding RNA MEG3 inhibits cell growth of gliomas by targeting miR-93 and inactivating PI3K/AKT pathway. Oncol. Rep. 38(4), 2408–2416. https://doi.org/10.3892/or.2017.5871
  33. Chen X., Huang Y., Shi D., Nie C., Luo Y., Guo L., Zou Y., Xie C. (2020) LncRNA ZNF667-AS1 promotes ABLIM1 expression by adsorbing microRNA-1290 to suppress nasopharyngeal carcinoma cell progression. OncoTargets Ther. 20(13), 4397–4409. doi: 10.2147/OTT.S245554
  34. Zhuang L., Ding W., Ding W., Zhang Q., Xu X., Xi D. (2021) lncRNA ZNF667-AS1 (NR_036521.1) inhibits the progression of colorectal cancer via regulating ANK2/JAK2 expression. J. Cell. Physiol. 236(3), 2178–2193. doi: 10.1002/jcp.30004
  35. Yang Y., Yang H., Xu M., Zhang H., Sun M., Mu P., Dong T., Du S., Liu K. (2018) Long non-coding RNA (lncRNA) MAGI2-AS3 inhibits breast cancer cell growth by targeting the Fas/FasL signalling pathway. Hum. Cell. 31(3), 232–241. doi: 10.1007/s13577-018-0206-1
  36. Hu R., Wu P., Liu J. (2022) LncRNA MAGI2-AS3 inhibits prostate cancer progression by targeting the miR-142-3p. Hormon. Metab Res. 54(11), 754–759. doi: 10.1055/a-1891-6864
  37. Wang F., Zu Y., Zhu S., Yang Y., Huang W., Xie H., Li G. (2018) Long noncoding RNA MAGI2-AS3 regulates CCDC19 expression by sponging miR-15b-5p and suppresses bladder cancer progression. Biochem Biophys Res Commun. 507(1–4), 231–235. doi: 10.1016/j.bbrc.2018.11.013
  38. Yin Z., Ma T., Yan J., Shi N., Zhang C., Lu X., Hou B., Jian Z. (2019) LncRNA MAGI2-AS3 inhibits hepatocellular carcinoma cell proliferation and migration by targeting the miR-374b-5p/SMG1 signaling pathway. J. Cell Physiol. 234(10), 18825–18836. doi: 10.1002/jcp.28521
  39. Sui Y., Chi W., Feng L., Jiang J. (2020) LncRNA MAGI2-AS3 is downregulated in non-small cell lung cancer and may be a sponge of miR-25. BMC Pulmonol. Med. 20(1), 59. doi: 10.1186/s12890-020-1064-7
  40. Li D., Wang J., Zhang M., Hu X., She J., Qiu X., Zhang X., Xu L., Liu Y, Qin S. (2020) LncRNA MAGI2-AS3 is regulated by BRD4 and promotes gastric cancer progression via maintaining ZEB1 overexpression by sponging miR-141/200a. Mol. Ther. Nucl. Acids. 19, 109–123. doi: 10.1016/j.omtn.2019.11.003
  41. Dong G., Wang X., Jia Y., Jia Y., Zhao W., Zhang J., Tong Z. (2020) HAND2-AS1 works as a ceRNA of miR-3118 to suppress proliferation and migration in breast cancer by upregulating PHLPP2. Biomed. Res. Int. 2020, 8124570. doi: 10.1155/2020/8124570
  42. Jiang Z., Li L., Hou Z., Liu W., Wang H., Zhou T., Li Y., Chen S. (2020) LncRNA HAND2-AS1 inhibits 5-fuorouracil resistance by modulating miR-20a/PDCD4 axis in colorectal cancer. Cell. Signal. 66, 109483.
  43. Yan Y., Li S., Wang S., Rubegni P., Tognetti L., Zhang J., Yan L. (2019) Long noncoding RNA HAND2-AS1 inhibits cancer cell proliferation, migration, and invasion in esophagus squamous cell carcinoma by regulating microRNA-21. J. Cell. Biochem. 120(6), 9564–9571.
  44. Chen J., Lin Y., Jia Y., Xu T., Wu F., Jin Y. (2019) LncRNA HAND2-AS1 exerts antioncogenic effects on ovarian cancer via restoration of BCL2L11 as a sponge of microRNA-340-5p. J. Cell. Physiol. 234, 23421–23436. https://doi.org/10.1002/jcp.28911
  45. Wang Y., Zhu P., Luo J., Wang J., Liu Z., Wu W., Du Y., Ye B., Wang D., He L., Ren W., Wang J., Sun X., Chen R., Tian Y., Fan Z. (2019) LncRNA HAND2-AS1 promotes liver cancer stem cell self-renewal via BMP signaling, EMBO J. 38(17), e101110. https://doi.org/10.15252/embj.2018101110
  46. He Y., Yue H., Cheng Y., Ding Z., Xu Z., Lv C., Wang Z., Wang J., Yin C., Hao H., Chen C. (2021) ALKBH5-mediated m6A demethylation of KCNK15-AS1 inhibits pancreatic cancer progression via regulating KCNK15 and PTEN/AKT signaling. Cell Death Dis. 12(12), 1121. doi: 10.1038/s41419-021-04401-4
  47. Peng J., Chen X.L., Cheng H.Z., Xu Z.Y., Wang H., Shi Z.Z., Liu J., Ning X.G., Peng H. (2019) Silencing of KCNK15-AS1 inhibits lung cancer cell proliferation via upregulation of miR-202 and miR-370. Oncol. Lett. 18(6), 5968–5976. doi: 10.3892/ol.2019.10944
  48. Zhang J., Yao T., Lin Z., Gao Y. (2017) Aberrant methylation of MEG3 functions as a potential plasma-based biomarker for cervical cancer. Sci. Rep. 7(1), 6271. doi: 10.1038/s41598-017-06502-7

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Methylation level of lncRNA genes MEG3, SEMA3B-AS1, HAND2-AS1, KCNK15-AS1, ZNF667-AS1, MAGI2-AS3 and PLUT in breast tumor samples and paired normal tissues. The upper and lower boundaries of the rectangles in the diagrams correspond to Q1 and Q3 (50% of the values fall inside the rectangle). The line inside the rectangle corresponds to the median. The lines above and below the rectangles indicate a “fence” located at a distance of 1.5 interquartile distances (Q1–Q3) from the lower and upper boundaries of the “box”.

Download (298KB)
3. Fig. 2. Level of methylation of lncRNA genes MEG3, SEMA3B-AS1, HAND2-AS1, KCNK15-AS1, ZNF667-AS1, MAGI2-AS3 and PLUT in samples of breast tumors at the late stage of breast cancer (III) compared with early stages of breast cancer (I– II) and normal tissues.

Download (303KB)
4. Fig. 3. Methylation level of lncRNA genes MEG3, SEMA3B-AS1, HAND2-AS1, KCNK15-AS1, ZNF667-AS1, MAGI2-AS3 and PLUT in breast tumor samples with metastases (N1–N3) and without metastases (N0).

Download (301KB)
5. Fig. 4. Level of methylation of the lncRNA PLUT gene in samples of breast tumors that do not express progesterone receptors (PR-) and estrogen receptors (ER-) and expressing progesterone receptors (PR+) and estrogen receptors (ER+).

Download (70KB)

Copyright (c) 2024 Russian Academy of Sciences