Influence of aerodynamic asymmetry on critical flight regimes of subsonic aircraft and recovery control

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

Stationary and stable periodic modes of spatial motion of the aircraft are considered. The influence of aerodynamic asymmetry on critical flight regimes is studied using direct calculation of their parameters using continuation on a parameter technique. The reasons for the appearance of aerodynamic asymmetry under symmetric flow conditions are described. The influence of the aerodynamic asymmetry on the possibility of entry into a spin and recovery control are analyzed. The sensitivity of the spin parameters to uncertainties of the mathematical model of aerodynamics is studied using robust analysis tools.

Толық мәтін

Рұқсат жабық

Авторлар туралы

M. Sidoryuk

Central Aerohydrodynamic Institute

Хат алмасуға жауапты Автор.
Email: mariya.sidoryuk@tsagi.ru
Ресей, Zhukovsky

A. Khrabrov

Central Aerohydrodynamic Institute

Email: aleksandr.khrabrov@tsagi.ru
Ресей, Zhukovsky

Әдебиет тізімі

  1. Аэродинамика, устойчивость и управляемость сверхзвуковых самолетов / Под. ред. Г. С. Бюшгенса. М.: Наука. Физматлит, 1998.
  2. Goman M.G., Khramtsovsky A.V. Application of Continuation and Bifurcation Methods to the Design of Control Systems // Philosophical Transactions of the Royal Society of London. Ser. A: Mathematical, Physical, and Engineering Sciences. 1998. V. 356. P. 2277–2295.
  3. https://commonresearchmodel.larc.nasa.gov/geometry/.
  4. Jackson P, Munson K. Peacock L. Jane’s All the Worlds Aircraft 2005–2006. Surrey: Jane’s Information Group. 2006.
  5. Richardson T.S, McFarlane C., Isikveren A., Badcock K. J., Da Ronch A. Analysis of Conventional and Asymmetric aircraft Configurations using CEASIOM // Progress in Aerospace Sciences. 2011. V. 47. № 8. P. 647–659.
  6. Khrabrov A., Sidoryuk M. Flight Control Law Design for Asymmetrical General Aviation Aircraft // Frontiers in Aerospace Engineering. 2013. V.2. № 4. P. 258–266.
  7. Goman M.G., Zagaynov G.I., Khramtsovsky A.V. Application of Bifurcation Methods to Nonlinear Flight Dynamics Problems // Progress in Aerospace Sciences. 1997. V. 33. № 59. P. 539–586.
  8. Guicheteau P. Bifurcation Theory: a Tool for Nonlinear flight Dynamics // Philosophical Transactions of the Royal Society of London. Ser. A. 1998. № 356. P. 2181–2201.
  9. Farcy D., Khrabrov A., Sidoryuk M. Sensitivity of Spin Parameters to Uncertainties of the Aircraft Aerodynamic Model // Journal of Aircraft. 2020. V. 57. № 5. P. 1–16.
  10. Гоман М.Г., Захаров С.Б., Храбров А.Н. Симметричное и несимметричное отрывное обтекание крыла малого удлинения с фюзеляжем // Уч. зап. ЦАГИ. 1985. № 6. С. 1–8.
  11. Гоман М.Г., Захаров С.Б., Храбров А.Н. Аэродинамический гистерезис при стационарном отрывном обтекании удлиненных тел //Докл. АН СССР.1985. № 1. С. 28–31.
  12. ГОСТ 20058-80. Динамика летательных аппаратов в атмосфере. Термины, определения и обозначения. М., 1981.
  13. ГОСТ 21890-76. Фюзеляж, крылья и оперение самолетов и вертолетов. Термины и определения. М., 1976.
  14. ГОСТ 22833-77. Характеристики самолета геометрические. Термины, определения и буквенные обозначения. М., 1987.
  15. Packard A., Balas G., Safonov M., Chiang R., Gahinet P., Nemirovski A., Apkarian P. Robust Control Toolbox // The MathWorks Inc. Natick. 2016.
  16. Sidoryuk M., Khrabrov A. Estimation of Regions of Attraction of Aircraft Spin Modes // Journal of Aircraft. 2019. V. 56. № 1. P. 205–216.
  17. Topcu U., Packard A., Seiler P., Wheeler T. Stability Region Analysis Using Simulations and Sum-Of-Squares Programming // Proc. American Control Conf. N.Y., 2007. P. 6009–6014.
  18. Topcu U., Packard A., Seiler P. Local Stability Analysis Using Simulations and Sum-Of-Squares Programming // Automatica. 2008. V. 44. № 10. P. 2669–2675.
  19. Tibken B. Estimation of the Domain of Attraction for Polynomial Systems via LMIS // Proc. IEEE Conf. on Decision and Control. Sydney, 2000. P. 3860–3864.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. General view of the aircraft models used.

Жүктеу (14KB)
3. Fig. 2. The model problem of investigating the occurrence of aerodynamic asymmetry.

Жүктеу (11KB)
4. Fig. 3. Symmetric (a) and non-symmetric (b, c) solutions for .

Жүктеу (7KB)
5. 4. Static dependences of the lateral aerodynamic coefficients of Model 1 obtained in two different wind tunnels at zero slip.

Жүктеу (26KB)
6. Fig. 5. The dependence of the coefficients of the roll and yaw moment of Model 1 on the angle of attack and slip.

Жүктеу (187KB)
7. Fig. 6. Dependence of the coefficients of the roll and yaw moment of Model 1 on the angle of attack and the dimensionless angular velocity.

Жүктеу (94KB)
8. Fig. 7. Dependence of the roll moment coefficient of the model 2 on the angles of attack and slip.

Жүктеу (93KB)
9. 8. Stationary solutions and limit cycles for model 1 depending on the aileron deflection (δb = -15°, δh = 0), an aerodynamic model with asymmetry: 1 – stable solutions, 2 – aperiodically unstable, 3 – oscillationally unstable, 4 – three or more eigenvalues in the right half-plane.

Жүктеу (233KB)
10. Fig. 9. Stationary solutions and limit cycles for Model 1 depending on the aileron deflection (δb = -15°, δh = 0), there is no aerodynamic asymmetry.

Жүктеу (185KB)
11. 10. Comparison of stationary solutions and limit cycles for Model 1 depending on the aileron deflection (δb = -15°, δh = 0): a – with asymmetry, b – without asymmetry.

Жүктеу (179KB)
12. 11. An example of a trajectory in an oscillatory corkscrew caused by aerodynamic asymmetry.

Жүктеу (80KB)
13. Fig. 12. Corkscrew modes at different values of the aerodynamic asymmetry parameter, ω > 0.

Жүктеу (163KB)
14. Fig. 13. Corkscrew modes at different values of the aerodynamic asymmetry parameter, w < 0.

Жүктеу (166KB)
15. 14. Robust stability of corkscrew modes caused by aerodynamic asymmetry with various uncertainties of aerodynamic derivatives at the moments of yaw and roll.

Жүктеу (49KB)
16. Fig. 15. Spin parameters caused by aerodynamic asymmetry, depending on the deflection of the ailerons, with various uncertainties of yaw and roll moments.

Жүктеу (88KB)
17. 16. The parameters of stationary critical modes for model 2, depending on the rudder deviation at δb = 5°, δe = 0: 1 – stable solutions, 2 – aperiodically unstable, 3 – oscillationally unstable, 4 – three or more eigenvalues in the right half-plane.

Жүктеу (169KB)
18. 17. Projections of the areas of attraction for several corkscrew modes, the numbers correspond to the mode numbers in the table: 1 – δh = -30°, α = 55°; 8 – δh = 30°, α = 55°; 4 – δh = 0°, α = 30°; 2 – δh = -20°, α = 50°; 3 – δh = -20°, α = 37°; 5 – δh = 0, α = 18°; 6 – δh = 20°, α = 32°; projections for mode 7 (δh= -30°, α = 35°) practically coincide with projections for mode 8.

Жүктеу (93KB)
19. Fig. 18. a – symmetrical model of aerodynamics: exit from a tailspin, b – model of aerodynamics taking into account asymmetry: non-exit.

Жүктеу (121KB)
20. Fig. 19. Model of aerodynamics with consideration of asymmetry: failure to get out of a tailspin.

Жүктеу (119KB)
21. Fig. 20. The model of aerodynamics, taking into account the asymmetry, the output of the enhanced piloting method.

Жүктеу (87KB)

© Russian Academy of Sciences, 2024