Influence of aerodynamic asymmetry on critical flight regimes of subsonic aircraft and recovery control

封面

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Stationary and stable periodic modes of spatial motion of the aircraft are considered. The influence of aerodynamic asymmetry on critical flight regimes is studied using direct calculation of their parameters using continuation on a parameter technique. The reasons for the appearance of aerodynamic asymmetry under symmetric flow conditions are described. The influence of the aerodynamic asymmetry on the possibility of entry into a spin and recovery control are analyzed. The sensitivity of the spin parameters to uncertainties of the mathematical model of aerodynamics is studied using robust analysis tools.

全文:

受限制的访问

作者简介

M. Sidoryuk

Central Aerohydrodynamic Institute

编辑信件的主要联系方式.
Email: mariya.sidoryuk@tsagi.ru
俄罗斯联邦, Zhukovsky

A. Khrabrov

Central Aerohydrodynamic Institute

Email: aleksandr.khrabrov@tsagi.ru
俄罗斯联邦, Zhukovsky

参考

  1. Аэродинамика, устойчивость и управляемость сверхзвуковых самолетов / Под. ред. Г. С. Бюшгенса. М.: Наука. Физматлит, 1998.
  2. Goman M.G., Khramtsovsky A.V. Application of Continuation and Bifurcation Methods to the Design of Control Systems // Philosophical Transactions of the Royal Society of London. Ser. A: Mathematical, Physical, and Engineering Sciences. 1998. V. 356. P. 2277–2295.
  3. https://commonresearchmodel.larc.nasa.gov/geometry/.
  4. Jackson P, Munson K. Peacock L. Jane’s All the Worlds Aircraft 2005–2006. Surrey: Jane’s Information Group. 2006.
  5. Richardson T.S, McFarlane C., Isikveren A., Badcock K. J., Da Ronch A. Analysis of Conventional and Asymmetric aircraft Configurations using CEASIOM // Progress in Aerospace Sciences. 2011. V. 47. № 8. P. 647–659.
  6. Khrabrov A., Sidoryuk M. Flight Control Law Design for Asymmetrical General Aviation Aircraft // Frontiers in Aerospace Engineering. 2013. V.2. № 4. P. 258–266.
  7. Goman M.G., Zagaynov G.I., Khramtsovsky A.V. Application of Bifurcation Methods to Nonlinear Flight Dynamics Problems // Progress in Aerospace Sciences. 1997. V. 33. № 59. P. 539–586.
  8. Guicheteau P. Bifurcation Theory: a Tool for Nonlinear flight Dynamics // Philosophical Transactions of the Royal Society of London. Ser. A. 1998. № 356. P. 2181–2201.
  9. Farcy D., Khrabrov A., Sidoryuk M. Sensitivity of Spin Parameters to Uncertainties of the Aircraft Aerodynamic Model // Journal of Aircraft. 2020. V. 57. № 5. P. 1–16.
  10. Гоман М.Г., Захаров С.Б., Храбров А.Н. Симметричное и несимметричное отрывное обтекание крыла малого удлинения с фюзеляжем // Уч. зап. ЦАГИ. 1985. № 6. С. 1–8.
  11. Гоман М.Г., Захаров С.Б., Храбров А.Н. Аэродинамический гистерезис при стационарном отрывном обтекании удлиненных тел //Докл. АН СССР.1985. № 1. С. 28–31.
  12. ГОСТ 20058-80. Динамика летательных аппаратов в атмосфере. Термины, определения и обозначения. М., 1981.
  13. ГОСТ 21890-76. Фюзеляж, крылья и оперение самолетов и вертолетов. Термины и определения. М., 1976.
  14. ГОСТ 22833-77. Характеристики самолета геометрические. Термины, определения и буквенные обозначения. М., 1987.
  15. Packard A., Balas G., Safonov M., Chiang R., Gahinet P., Nemirovski A., Apkarian P. Robust Control Toolbox // The MathWorks Inc. Natick. 2016.
  16. Sidoryuk M., Khrabrov A. Estimation of Regions of Attraction of Aircraft Spin Modes // Journal of Aircraft. 2019. V. 56. № 1. P. 205–216.
  17. Topcu U., Packard A., Seiler P., Wheeler T. Stability Region Analysis Using Simulations and Sum-Of-Squares Programming // Proc. American Control Conf. N.Y., 2007. P. 6009–6014.
  18. Topcu U., Packard A., Seiler P. Local Stability Analysis Using Simulations and Sum-Of-Squares Programming // Automatica. 2008. V. 44. № 10. P. 2669–2675.
  19. Tibken B. Estimation of the Domain of Attraction for Polynomial Systems via LMIS // Proc. IEEE Conf. on Decision and Control. Sydney, 2000. P. 3860–3864.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. General view of the aircraft models used.

下载 (14KB)
3. Fig. 2. The model problem of investigating the occurrence of aerodynamic asymmetry.

下载 (11KB)
4. Fig. 3. Symmetric (a) and non-symmetric (b, c) solutions for .

下载 (7KB)
5. 4. Static dependences of the lateral aerodynamic coefficients of Model 1 obtained in two different wind tunnels at zero slip.

下载 (26KB)
6. Fig. 5. The dependence of the coefficients of the roll and yaw moment of Model 1 on the angle of attack and slip.

下载 (187KB)
7. Fig. 6. Dependence of the coefficients of the roll and yaw moment of Model 1 on the angle of attack and the dimensionless angular velocity.

下载 (94KB)
8. Fig. 7. Dependence of the roll moment coefficient of the model 2 on the angles of attack and slip.

下载 (93KB)
9. 8. Stationary solutions and limit cycles for model 1 depending on the aileron deflection (δb = -15°, δh = 0), an aerodynamic model with asymmetry: 1 – stable solutions, 2 – aperiodically unstable, 3 – oscillationally unstable, 4 – three or more eigenvalues in the right half-plane.

下载 (233KB)
10. Fig. 9. Stationary solutions and limit cycles for Model 1 depending on the aileron deflection (δb = -15°, δh = 0), there is no aerodynamic asymmetry.

下载 (185KB)
11. 10. Comparison of stationary solutions and limit cycles for Model 1 depending on the aileron deflection (δb = -15°, δh = 0): a – with asymmetry, b – without asymmetry.

下载 (179KB)
12. 11. An example of a trajectory in an oscillatory corkscrew caused by aerodynamic asymmetry.

下载 (80KB)
13. Fig. 12. Corkscrew modes at different values of the aerodynamic asymmetry parameter, ω > 0.

下载 (163KB)
14. Fig. 13. Corkscrew modes at different values of the aerodynamic asymmetry parameter, w < 0.

下载 (166KB)
15. 14. Robust stability of corkscrew modes caused by aerodynamic asymmetry with various uncertainties of aerodynamic derivatives at the moments of yaw and roll.

下载 (49KB)
16. Fig. 15. Spin parameters caused by aerodynamic asymmetry, depending on the deflection of the ailerons, with various uncertainties of yaw and roll moments.

下载 (88KB)
17. 16. The parameters of stationary critical modes for model 2, depending on the rudder deviation at δb = 5°, δe = 0: 1 – stable solutions, 2 – aperiodically unstable, 3 – oscillationally unstable, 4 – three or more eigenvalues in the right half-plane.

下载 (169KB)
18. 17. Projections of the areas of attraction for several corkscrew modes, the numbers correspond to the mode numbers in the table: 1 – δh = -30°, α = 55°; 8 – δh = 30°, α = 55°; 4 – δh = 0°, α = 30°; 2 – δh = -20°, α = 50°; 3 – δh = -20°, α = 37°; 5 – δh = 0, α = 18°; 6 – δh = 20°, α = 32°; projections for mode 7 (δh= -30°, α = 35°) practically coincide with projections for mode 8.

下载 (93KB)
19. Fig. 18. a – symmetrical model of aerodynamics: exit from a tailspin, b – model of aerodynamics taking into account asymmetry: non-exit.

下载 (121KB)
20. Fig. 19. Model of aerodynamics with consideration of asymmetry: failure to get out of a tailspin.

下载 (119KB)
21. Fig. 20. The model of aerodynamics, taking into account the asymmetry, the output of the enhanced piloting method.

下载 (87KB)

版权所有 © Russian Academy of Sciences, 2024