Comparative analysis of performance of hybrid and pure em suspensions
- Authors: Amoskov V.M.1, Arslanova D.N.1, Belov A.A.1, Belov A.V.1, Vasiliev V.N.1, Deomidov V.V.1, Kaparkova M.V.1, Kukhtin V.P.1, Lamzin E.A.1, Larionov M.S.1, Morozov I.A.2, Nezhentzev A.N.1, Ovsyannikov D.A.3, Ovsyannikov Jr D.A.4,1, Rodin I.Y.1, Smirnov S.A.5, Smirnova O.Y.5, Sytchevsky S.E.3,1, Shatil N.A.1, Firsov A.A.1, Firsova T.A.1
-
Affiliations:
- Joint Stock Company “NIIEFA”
- TIT RDC PJSC
- St. Petersburg State University
- St. Petersburg State University of Industrial Technologies and Design
- Emperor Alexander I St. Petersburg State Transport University
- Issue: Vol 8, No 2 (2022)
- Pages: 43-54
- Section: Original studies
- URL: https://transsyst.ru/transj/article/view/109062
- DOI: https://doi.org/10.17816/transsyst20228243-54
Cite item
Full Text
Abstract
Aim: The aim of the study is a comparative representation of a hybrid EM suspension (HEMS) for maglev transport and a pure EM configuration.
Methods: Several designs have been numerically investigated and compared to conventional EMS. The numerical model has been validated with magnetic measurements on the experimental set-up.
Results: The HEMS implies a combination of electromagnets (EM) and permanent magnets (PM) in a common magnetic circuit. The magnets synergy of HEMS has been demonstrated that leads to sufficient reduction in energy consumption and weight as compared to a conventional EMS.
Conclusions: A desired performance of HEMS has been achieved. Efficiency of the design solutions has been verified numerically and experimentally.
Full Text
ВВЕДЕНИЕ
Анализ систем электромагнитных подвесов (ЭМП) [1] указывает на ряд преимуществ применения в них так называемых «гибридных электромагнитов» (ГЭМ) [2–10] по сравнению с электромагнитами «традиционного» исполнения (ЭМ). В АО «НИИЭФА» испытан прототип гибридного магнита [11, 12] из разработанной линейки ГЭМ, отличающихся грузоподъемностью и, соответственно, размерами.
Адаптированная для численного моделирования таких систем вычислительная технология [13, 2] позволяет конструировать и создавать подвесы любой требуемой на практике грузоподъемности.
Для изготовленного прототипа варианта серийного ГЭМ (детальнее см. параметры в [14] и в Табл. 1, заимствованной из [14]) был выполнен комплекс работ на сертифицированном стенде АО «НИИЭФА» [14] и любезно предоставленной АО ИНЦ «ТЕМП» испытательной установке [15].
Таблица 1. Параметры гибридного электромагнита АО «НИИЭФА»
Сечение токовой катушки, мм2 | 1450 |
Коэффициент заполнения проводника медью | 0,8 |
Максимальная рассеиваемая мощность, Вт | 240 |
Проводник марки ПЭЭИП2-155, мм2 | 1,12х3,55 (1,28×3,71 в изол.) |
Количество витков проводника в катушке | 306 |
Максимальный ток (стационарный), А | 10 |
Максимальный ток (кратковременный), А | 15 |
Индуктивность (при зазоре 5 мм), мГн | 150 (I=13 А) и 300 (I=0 А) |
Индуктивность (при зазоре ∞), мГн | 180 (I=0 А) |
Собственная индуктивность катушки, мГн | 25 |
Сопротивление обмотки, Ом | 2 |
Марка постоянных Nd-Fe-B магнитов | N48SH |
Размеры Д×Ш×В, мм | 650×130×89 |
Вес, Н | 450 |
Измерения проводились с целью:
- определения зависимости подъемной силы магнита от величины тока в катушке при различных величинах задаваемого левитационного зазора (воздушного промежутка между установленной на путевой структуре ферромагнитной направляющей и поверхностью полюсов ГЭМ);
- сопоставления измеренной зависимости подъемно силы с данными вычислительного эксперимента, полученными на разработанной детальной трехмерной (3D) математической модели магнита подвеса.
Сравнение данных продемонстрировало приемлемую для практических целей точность как числовой, так физической моделей. А дополнительные перекрестные проверки прототипа на двух измерительных установках подтверждают достоверность реализованной методики измерения. Таким образом выполнена верификация вычислительной технологии для анализа магнитов, специфичных для целей магнитолевитационных подвесов.
СРАВНЕНИЕ ГЭМ И ЭМ ЛЕВИТАЦИОННОГО ПОДВЕСА
Следует подчеркнуть, что методически величина подъемной силы моделируется путем интегрирования плотности пондеромоторных сил по объему исследуемой системы. Распределение сил получается в результате использования тензора натяжений Максвелла, компоненты которого, в свою очередь, вычисляются на основе расчета компонент векторов магнитной индукции и напряженности магнитного поля. Таким образом, анализ результатов расчетов и измерения сил позволяет сделать заключение о достоверности моделирования как полей, так и сил в системах магнитолевитационных подвесов. Этот вывод, впрочем, соответствует аналогичным выводам, сделанным при анализе моделей электрофизических установок других типов (ускорители заряженных частиц и системы их транспортировки, термоядерные ректоры с магнитным удержанием плазмы, синхронные электродвигатели и т.п.).
На Рис. 1 приведено характерное распределение магнитного поля в поперечном сечении магнита вблизи центральной части.
Рис. 1. Характерное распределение магнитного поля в поперечном сечении вблизи центральной части ГЭМ АО «НИИЭФА»
С целью сравнительной оценки силовых и энергетических характеристик электромагнита ГЭМ АО «НИИЭФА» была также разработана вычислительная модель электромагнита традиционного исполнения, показанная на Рис. 2. Этот магнит представляет собой U-образный магнит с параметрами близкими к оптимальным. Магниты такого типа успешно применялись в магнитолевитационных транспортных системах (например, в Германии, Китае, Южной Корее). Сила притяжения традиционного магнита к ферромагнитной направляющей определяется величиной тока в катушке. Поэтому для увеличения несущей способности как систем разгрузки осей, так и магнитолевитационных систем (на первый взгляд) необходимо стремиться к повышению величины тока. Известно, что работоспособность таких систем ограничивается допустимым нагревом (температурой), вызванным тепловыделением тока в катушке.
Рис. 2. Характерное распределение магнитного поля в модели электромагнита традиционного исполнения с параметрами, близкими к оптимальным
В анализируемом случае оба магнита сравниваются по энергопотреблению и рабочей температуре при условии генерации одинаковой силы. При этом сама максимально возможная величина силы определялась предельно допустимой температурой катушки магнита.
На Рис. 3 приведено распределение температуры в поперечном сечении традиционного ЭМ при джоулевых тепловыделениях, составляющих P = 576 Вт (полный ток в катушке 9600 А). При температуре окружающей среды 300 К и величине коэффициента конвективной теплоотдачи (ККТ), равном 10 Вт/м2: максимальная температура в катушке составляет Тмакс = 416 К и минимальная ‑Тмин = 402 К.
Рис. 3. Распределение температуры в электромагните традиционного исполнения. ККТ равен 10 Вт/м2К.
В результате проведенных численных расчетов были определены следующие характеристики модели U – образного магнита. При генерации силы величиной 4700 Н и зазоре 10 мм он потребляет более 600 Вт (при генерации силы в 3000 Н магнит потребляет 380 Вт энергии). При величине коэффициента конвективной теплоотдачи равном 20 Вт/м2К (интенсивный обдув) и коэффициенте черноты поверхности 0,5 перегрев проводника обмотки магнита относительно окружающей среды составляет ~760К (при ККТ равном 10 Вт/м2К перегрев проводника составит ~1160К). Вес магнита равен ~90 кг.
На Рис. 4 приведено распределение температуры в поперечном сечении ГЭМ АО «НИИЭФА». При генерации силы величиной 4700 Н и зазоре 10 мм джоулевы тепловыделения составляют P = 76 Вт (ток в проводнике 7 А). При температуре окружающей среды 300 К и ККТ равном 10 Вт/м2: Тмакс = 324 К и Тмин = 322 К. Магнит при этом потребляет около 80 Вт электроэнергии. При генерации силы в 3000 Н магнит энергии практически не потребляет. При коэффициенте теплоотдачи 20 Вт/м2К перегрев проводника обмотки магнита относительно окружающей среды составит ~120К (при 10 Вт/м2К перегрев проводника составит ~240К). Вес магнита равен ~50 кг.
Рис. 4. Распределение температуры в ГЭМ АО «НИИЭФА». ККТ равен 10 Вт/м2К.
ВЫВОДЫ
В АО «НИИЭФА» разработан и изготовлен полномасштабный прототип серийного образца гибридного электромагнита подвеса магнитолевитационных транспортных систем. С целью сопоставительного анализа разработана математическая модель адекватного гибридному магниту электромагнита «традиционного» исполнения в виде U-образного магнита. Параметры этого ЭМ были выбраны близкими к оптимальным для целей обеспечения разгрузки осей транспортных систем или магнитолевитационных подвесов.
Вычислительный эксперимент показал, что стационарно генерируемая традиционным магнитом пондеромоторная сила 4,7 кН при зазоре 10 мм достигается при сильном разогреве проводника обмотки (~450 К), Та же сила может быть создана гибридным магнитом разработки АО «НИИЭФА» при потреблении им в 7,5 раза меньшего количества энергии.
Гибридный магнит почти в два раза легче.
При генерации силы в 3 кН (режим работы обеспечивается только постоянными магнитами) ГЭМ практически не потребляет энергии в то время, как эквивалентный магнит традиционного исполнения потребляет 380 Вт.
БЛАГОДАРНОСТИ
Работа выполнена при частичной поддержке Фонда Академика Василия Андреевича Глухих.
Авторы признательны В.П. Занину, А.А. Галенко, А.Т. Горелову за плодотворные дискуссии.
Авторы заявляют, что:
- У них нет конфликта интересов;
- Настоящая статья не содержит каких-либо исследований с участием людей в качестве объектов исследований.
About the authors
Victor M. Amoskov
Joint Stock Company “NIIEFA”
Email: amoskov-sci@yandex.ru
ORCID iD: 0000-0001-9781-9116
SPIN-code: 2436-3828
Scopus Author ID: 6701846033
PhD in Physics and Mathematics
Russian Federation, St. PetersburgDarya N. Arslanova
Joint Stock Company “NIIEFA”
Email: arslanova-sci@yandex.ru
ORCID iD: 0000-0002-3791-723X
SPIN-code: 3234-8141
Scopus Author ID: 55314279800
MSc
Russian Federation, St. PetersburgAndrei A. Belov
Joint Stock Company “NIIEFA”
Email: andrewthewhite@mail.ru
ORCID iD: 0000-0001-7040-6741
SPIN-code: 6291-0480
MSc
Russian Federation, St. PetersburgAlexander V. Belov
Joint Stock Company “NIIEFA”
Email: belov-sci@yandex.ru
ORCID iD: 0000-0001-9486-3437
SPIN-code: 3748-2363
Scopus Author ID: 7202831959
MSc
Russian Federation, St. PetersburgVyacheslav N. Vasiliev
Joint Stock Company “NIIEFA”
Email: vvnm@mail.ru
ORCID iD: 0000-0002-1218-6274
SPIN-code: 5444-8639
Scopus Author ID: 7005989574
MSc
Russian Federation, St. PetersburgValery V. Deomidov
Joint Stock Company “NIIEFA”
Email: deomidov@icloud.com
ORCID iD: 0000-0003-2795-8342
SPIN-code: 5931-9704
MSc
Russian Federation, St. PetersburgMarina V. Kaparkova
Joint Stock Company “NIIEFA”
Email: kaparkova-sci@yandex.ru
ORCID iD: 0000-0002-3489-5581
SPIN-code: 6881-2266
Scopus Author ID: 12445243900
MSc
Russian Federation, St. PetersburgVladimir P. Kukhtin
Joint Stock Company “NIIEFA”
Email: kukhtin-sci@yandex.ru
ORCID iD: 0000-0001-6925-6141
SPIN-code: 1628-3135
Scopus Author ID: 35353250700
PhD in Physics and Mathematics
Russian Federation, St. PetersburgEvgeny A. Lamzin
Joint Stock Company “NIIEFA”
Email: lamzin-sci@yandex.ru
ORCID iD: 0000-0002-6072-5711
SPIN-code: 8287-7879
Scopus Author ID: 12756829300
PhD, DSc in Physics and Mathematics
Russian Federation, St. PetersburgMikhail S. Larionov
Joint Stock Company “NIIEFA”
Email: larionov-sci@yandex.ru
ORCID iD: 0000-0002-8570-7210
SPIN-code: 1631-3598
Scopus Author ID: 36443801800
MSc
Russian Federation, St. PetersburgIgor A. Morozov
TIT RDC PJSC
Email: morozov083@gmail.com
ORCID iD: 0000-0001-7451-730X
SPIN-code: 4815-5843
MSc
Russian Federation, St. PetersburgAndrey N. Nezhentzev
Joint Stock Company “NIIEFA”
Email: nezhentzev-sci@yandex.ru
ORCID iD: 0000-0002-8724-7211
SPIN-code: 7319-8924
Scopus Author ID: 57201374326
MSc
Russian Federation, St. PetersburgDmitry A. Ovsyannikov
St. Petersburg State University
Email: d.a.ovsyannikov@spbu.ru
ORCID iD: 0000-0002-0829-2023
SPIN-code: 7762-9740
DSc in Physics and Mathematics, Full Professor
Russian Federation, St. PetersburgDmitry A. Ovsyannikov Jr
St. Petersburg State University of Industrial Technologies and Design; Joint Stock Company “NIIEFA”
Author for correspondence.
Email: d-ovs@yandex.ru
ORCID iD: 0000-0003-4191-8494
SPIN-code: 5657-4707
MSc
Russian Federation, St. Petersburg; St. PetersburgIgor Yu. Rodin
Joint Stock Company “NIIEFA”
Email: rodin@sintez.niiefa.spb.su
SPIN-code: 4935-6473
Scopus Author ID: 7005063976
PhD in Engineering
Russian Federation, St. PetersburgSergei A. Smirnov
Emperor Alexander I St. Petersburg State Transport University
Email: noc-pgups@yandex.ru
ORCID iD: 0000-0002-2096-6967
SPIN-code: 3042-2910
Leading Researcher
Russian Federation, St. PetersburgOlga Yu. Smirnova
Emperor Alexander I St. Petersburg State Transport University
Email: noc-pgups@yandex.ru
ORCID iD: 0000-0002-2239-4384
SPIN-code: 9083-2984
Senior Researcher
Russian Federation, St. PetersburgSergey E. Sytchevsky
St. Petersburg State University; Joint Stock Company “NIIEFA”
Email: sytch-sie@yandex.ru
ORCID iD: 0000-0003-1527-4015
SPIN-code: 3073-0334
Scopus Author ID: 6602159085
DSc in Physics and Mathematics
Russian Federation, St. Petersburg; St. PetersburgNicolai A. Shatil
Joint Stock Company “NIIEFA”
Email: shatiln@yandex.ru
ORCID iD: 0000-0001-8529-130X
SPIN-code: 2818-0206
Scopus Author ID: 6507475131
MSc, PhD in Engineering
Russian Federation, St. PetersburgAlexey A. Firsov
Joint Stock Company “NIIEFA”
Email: firsov-sci@yandex.ru
ORCID iD: 0000-0002-7846-8717
SPIN-code: 7943-4297
Scopus Author ID: 56069602000
MSc
Russian Federation, St. PetersburgTatiana A. Firsova
Joint Stock Company “NIIEFA”
Email: firsova@sintez.niiefa.spb.su
ORCID iD: 0000-0002-9229-9622
SPIN-code: 2858-7562
Russian Federation, St. Petersburg
References
- Журавлев Ю.Н. Активные магнитные подшипники. Теория, расчет, применение. – СПб: Политехника, 2003. – 206 с. [Zhuravljov JuN. Aktivnye magnitnye podshipniki. Teoriya, raschyot, primenenie. SPb: Politehnika, 2003. 206 s. (In Russ.)]. Ссылка активна на: 27.10.2021. Доступно по: https://www.studmed.ru/zhuravlev-yun-aktivnye-magnitnye-podshipniki-teoriya-raschet-primenenie-2003_ae0c7437419.html
- Amoskov VM, Arslanova DN, Bazarov AM, et al. Modeling EMS maglev systems to develop control algorithms. Cybernetics and physics. 2018;7(1):11-17. doi: 10.35470/2226-4116-2018-7-1-11-17
- Tzeng YK, Wang TC. Optimal design of the electromagnetic levitation with permanent and electro magnets. IEEE Transaction on Magnetics. 1994;30(6):4731-733. doi: 10.1109/20.334204
- Onuki T, Toda Y. Optimal Design of Hybrid Magnet in Maglev System with Both Permanent and Electro Magnets. IEEE Transaction on Magnetics. 1993;29(2):1783-1786. doi: 10.1109/20.250751
- Kim K, Han H, Kim C, Yang S. Dynamic Analysis of a Maglev Conveyor Using an EM-PM Hybrid Magnet. Journal of Electrical Engineering and Technology. 2013;8(6):1571-1578. doi: 10.5370/JEET.2013.8.6.1571
- Kim C-H, Cho H-W, Lee J-M, et al. Zero-power control of magnetic levitation vehicles with permanent magnets. ICCAS 2010: Proceedings of the International Conference on Control, Automation and Systems; 2010 Oct 27-30; Gyeonggi-do, Korea (South). 2010. p. 732-735. doi: 10.1109/ICCAS.2010.5670118
- Safaei F, Suratgar AA, Afshar A, et al. Characteristics Optimization of the Maglev Train Hybrid Suspension System Using Genetic Algorithm. IEEE Transactions on Energy Conversion. 2015;30(3):1163-1170. doi: 10.1109/tec.2014.2388155
- Erkan K, Okur B, Koseki T, et al. Experimental evaluation of zero-power levitation control by transfer function approach for a 4-pole hybrid electromagnet. In: Proceeding of the 2011 IEEE International Conference on Mechatronics; 2011 April 13-15; Istanbul, Turkey. 2011. p. 23-28, doi: 10.1109/ICMECH.2011.5971299
- Morishita M, Azukizawa T, Kanda S, et al. A new MAGLEV system for magnetically levitated carrier system. IEEE Transactions on Vehicular Technology. 1989;38(4):230-236. doi: 10.1109/25.45486
- Wang TC, Tzeng YK. A new electromagnetic levitation system for rapid transit and high speed transportation. IEEE Transactions on Magnetics. 1994;30(6):4734-4736. doi: 10.1109/20.334205
- Патент РФ на изобретение № RU2739939/ 30.12.2020. Бюл. № 1. Амосков В.М., Арсланова Д.Н., Белов А.В., Васильев В.Н., Кухтин В.П., Капаркова М.В., Ламзин Е.А., Ларионов М.С., Неженцев А.Н., Родин И.Ю., Сычевский С.Е., Фирсов А.А., Шатиль Н.А. «Гибридный электромагнит для системы маглев». [Pat. RUS № RU2739939/ 30.12.2020. Byul. № 1. Amoskov V.M., Arslanova D.N., Belov A.V., et al. “Gibridnyj jelektromagnit dlya sistemy maglev”. (In Russ.)]. Доступно по: https://patenton.ru/patent/RU2739939C1 Ссылка активна на: 27.10.2021.
- Патент РФ на изобретение № RU2743753/ 25.02.2021. Бюл. № 6. Амосков В.М., Арсланова Д.Н., Белов А.В., Васильев В.Н., Кухтин В.П., Капаркова М.В., Ламзин Е.А., Ларионов М.С., Неженцев А.Н., Родин И.Ю., Сычевский С.Е., Фирсов А.А., Шатиль Н.А. «Гибридный магнит без полей рассеяния для системы маглев». [Pat. RUS № RU2743753/ 25.02.2021. Byul. № 6. Amoskov V.M., Arslanova D.N., Belov A.V., et al. “Gibridnyj magnit bez poley rassejaniya dlya sistemy maglev”. (In Russ.)]. Ссылка активна на: 27.10.2021. Доступно по: https://patenton.ru/patent/RU2743753C1
- Amoskov VM, Belov AV, Belyakov VA, et al. Computation technology based on KOMPOT and KLONDIKE codes for magnetostatic simulations in tokamaks. Plasma Devices and Operations. 2008;16(2):89-103. doi: 10.1080/10519990802018023
- Акулицкий С.Г., Амосков В.М., Арсланова Д.Н. и др. Результаты стендовых испытаний прототипа полномасштабного гибридного электромагнита для систем маглев // Инновационные транспортные системы и технологии. – 2021. – Т. 7. – № 4. – С. 14–32. [Akulitzky SG, Amoskov VM, Arslanova DN, et al. Bench testing of hybrid EMS prototype. Modern Transportation Systems and Technologies. 2021;7(4):14-32. (In Russ.)]. doi: 10.17816/transsyst20217400-00
- Амосков В.М., Арсланова Д.Н., Белов А.В. и др. Натурные испытания и верификация математической модели гибридного электромагнита подвеса для больших величин левитационных зазоров // Инновационные транспортные системы и технологии. – 2022. – Т. 8. – № 1. – С. 28–37. [Amoskov VM, Arslanova DN, Belov AV, et al. Verification of numerical model of hybrid ems using test bench measurements at large air gap. Modern Transportation Systems and Technologies. 2022;8(1):28-37. (In Russ.)]. doi: 10.17816/transsyst20228128-37
Supplementary files
