West Siberian sedimentary basin. Crustal subsidence caused by rock contraction in its lower part due to prograde metamorphism

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

The history of the crustal subsidence in the Mesozoic and Cenozoic in the West Siberian Basin – the largest sedimentary basin in the world – is considered. Most researchers associate its formation with post-rift subsidence of the crust, which followed an episode of strong lithospheric stretching about 250 million years ago near to the Permian to the Triassic transition. A characteristic feature of post-rift subsidence is a decrease in its rate in time. During the Mesozoic-Cenozoic history, in Western Siberia the rate of crustal subsidence should have slow down by an order of magnitude. However, the analysis of long (700–900 km) seismic profiles in the north of Western Siberia and in the Southern Kara Sea shows that since the beginning of the Mesozoic in these regions, on average, there has been an acceleration of the crustal subsidence. Under such circumstances, lithospheric stretching in them could be responsible for only a small part of the total subsidence of the crust of 6–7 km. In Western Siberia, the Earth’s crust is close to the isostatic equilibrium. Then, in the absence of strong stretching, the accumulation of thick sedimentary sequences in the basin could only have been caused by rock contraction in the lower crust due to prograde metamorphic reactions. To obtain the above results, we used, for the first time, some simple methods to analyze the structure of the sedimentary cover in the West Siberian Basin. Detailed seismic profiles have been published for many other deep basins on all the continents. The methods of their interpretation implemented in this paper can be easily applied to determine the role of lithospheric stretching in the formation of deep sedimentary basins on the global scale.

Толық мәтін

Рұқсат жабық

Авторлар туралы

E. Artyushkov

Institute of Physics of the Earth, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: arty-evgenij@yandex.ru

Academician of the RAS

Ресей, Moscow

P. Chekhovich

Institute of Physics of the Earth, Russian Academy of Sciences; Moscow State University

Email: p.chekhovich@gmail.com

Музей землеведения

Ресей, Moscow; Moscow

Әдебиет тізімі

  1. Артюшков Е.В. Физическая тектоника. М. Наука, 1993. 457 с.
  2. Артюшков Е.В., Беляев И.В., Казанин Г.С., Павлов С.П., Чехович П.А., Шкарубо С.И. Механизмы образования сверхглубоких прогибов: Северо-Баренцевская впадина. Перспективы нефтегазоносности // Геология и геофизика. 2014. Т. 55 № 5–6. С. 821–846.
  3. Артюшков Е.В., Чехович П.А. Роль глубинных флюидов в погружении коры древнего кратона. Осадочный бассейн Московской синеклизы в позднем девоне // Доклады РАН. Науки о Земле. 2022. Т. 507. № 2. С. 119–131. https://doi.org/ 10.31857/S2686739722601843
  4. Артюшков Е.В., Чехович П.А. Западно-Сибирский осадочный бассейн. Отсутствие сильного растяжения земной коры по данным сверхглубокого бурения // Доклады РАН. Науки о Земле. 2023. Т. 512, № 2. С. 90–99. https://doi.org/10.31857/S2686739723601175
  5. Астафьев Д.А., Скоробогатов В.А., Радчикова А.М. Грабен-рифтовая система и размещение зон нефтегазонакопления на севере Западной Сибири // Геология нефти и газа. 2008. № 4. С. 2–8.
  6. Добрецов Н.Л., Полянский О.П., Ревердатто В.В., Бабичев А.В. Динамика нефтегазоносных бассейнов в Арктике и сопредельных территориях как отражение мантийных плюмов и рифтогенеза // Геология и геофизика. 2013. Т. 54. № 8. С. 1145–1161.
  7. Конторович В.А., Аюнова Д.В., Губин И.А., Ершов С.В., Калинин А.Ю., Калинина Л.М., Канаков М.С., Соловьев М.В., Сурикова Е.С., Шестакова Н.И. Сейсмостратиграфия, история формирования и газоносность структур Надым-Пурского междуречья // Геология и геофизика. 2016. Т. 57. № 8. С. 1583–1595. doi: 10.15372/GiG20160810
  8. Конторович В.А., Аюнова Д.В., Губин И.А., Калинин А.Ю., Калинина Л.М., Конторович А.Э., Малышев Н.А., Скворцов М.Б., Соловьев М.В., Сурикова Е.С. История тектонического развития Арктических территорий и акваторий Западно-Сибирской нефтегазоносной провинции // Геология и геофизика. 2017. Т. 58. № 3–4. С. 423–444. doi: 10.15372/GiG20170307
  9. Конторович В.А., Аюнова Д.В., Гусева С.М., Калинина Л.М., Калинин А.Ю., Канаков М.С., Соловьев М.В., Сурикова Е.С., Торопова Т.Н. Сейсмогеологическая характеристика осадочных комплексов и нефтегазоносность Ямальской, Гыданской и Южно-Карской нефтегазоносных областей (Арктические регионы Западной Сибири, шельф Карского моря) // Геофизические технологии. 2018. № 4. С. 10–26. doi: 10.18303/2619-1563-2018-4-3
  10. Метелкин Д.В., Верниковский В.А., Казанский А.Ю. Тектоническая эволюция Сибирского палеоконтинента от неопротерозоя до позднего мезозоя // Геология и геофизика. 2012. Т. 53. № 7. С. 883–899.
  11. Мещеряков К.А., Карасева Т.В. Особенности формирования триасовых прогибов севера Западной Сибири в связи с нефтегазоносностью // Нефтегазовая геология. Теория и практика. 2010. Т. 5. № 10. С. 9 EDN OYQEVP.
  12. Сараев С.В., Батурина Т.П., Пономарчук В.А., Травин А.В. Пермотриасовые вулканиты Колтогорско-Уренгойского рифта Западно-Сибирской геосинеклизы // Геология и геофизика. 2009. Т. 50. № 1. С. 4–20.
  13. Смирнов О.А., Бородкин В.Н., Лукашов А.В., Плавник А.Г., Трусов А.И. Региональная модель рифтогенеза и структурно-тектонического районирования севера Западной Сибири и Южно-Карской синеклизы по комплексу геолого-геофизических исследований // Нефтегазовая геология. Теория и практика. 2022. http://www.ngtp.ru/rub/2022/1_2022.html
  14. Сурков В.С., Смирнов Л.В., Жеро О.Г. Раннемезозойский рифтогенез и его влияние на структуру литосферы Западно-Сибирской плиты // Геология и геофизика. 1987. № 9. С. 3–11.
  15. Allen P.A., Allen J.R. Basin analysis. Oxford. 2005. Blackwell. 549 p.
  16. Artemjev M.E., Artyushkov E.V. Structure and isostasy of the Baikal rift and the mechanism of rifting // J. Geophys. Res. 1971. V. 76. P. 1197–1211.
  17. Kaban M.K., P. Schwintzer P., Tikhotsky S.A. Global isostatic gravity model of the Earth // Geophys. J. Int. 1999. V. 136. P. 519–536.
  18. Lithgow-Bertelloni C., Silver P.G. Dynamic topography, plate driving forces and the African Superswell // Nature. 1998. V. 395. P. 269–272.
  19. McKenzie D. Some remarks on the development of sedimentary basins // Earth Planet. Sci. Lett. 1978. V. 40. P. 25–32.
  20. Molnar P., England P.C., Jones C.H. Mantle dynamics, isostasy, and the support of high terrain // Journal of Geophysical Research. Solid Earth. 2015. V. 120. P. 1932–1957. https://doi.org/ 10.1002/2014JB011724

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. 1. The location of ultra-deep wells and seismogeological profiles in the structure of the West Siberian basin. The colored fill shows the rift system in the Paleozoic folded basement ([11], with changes), the dotted line shows the boundaries of the sedimentary basin.

Жүктеу (328KB)
3. Fig. 2. Seismogeological section according to regional profile No. 26 ([7, 9] – with changes). (a) – the most important geometric parameters of the section; the colored arrows show the precipitation levels that compensated for the expected post-drift dive at stage T2-J1 and the actual dive that occurred at stage J2-KZ. The vertical axis shows the propagation time of elastic waves in the forward and reverse directions in milliseconds. (b and c) are fragments of the section, which show shifts in the depth of the base of the Triassic terrigenous deposits and boundaries in the Paleozoic complex. The yellow arrows mark the places where the reflecting horizons are not broken by discontinuities. 1 is the reflecting boundary in the Paleozoic megacomplex (P), 2 is the base of the Terrigenous Triassic (reflecting horizon A), 3 is the reflecting horizons in the Jurassic seismogeological megacomplex (sole Ia and roof C of the Lower Jurassic), 4 is the base of the Neocomian megacomplex (roof of the Bazhenov formation), the base and roof of the Aptian-Albian-Cenomanian megacomplex, 5 – the base of the Cenozoic megacomplex, 6 – discontinuous disturbances: a – without displacement of the reflecting boundaries, b – the same with displacements, 7 – amplitudes of the vertical displacement of the reflectors at the discontinuities (milliseconds).

Жүктеу (634KB)
4. Fig. 3. Stretching of the reflector in the sedimentary cover or on the surface of the foundation caused by the formation of a discharge.

Жүктеу (56KB)
5. Fig. 4. Seismogeological section along the Kara Sea–Yamal profile ([8, 9] with changes). The colored arrows show the thickness of sediments (milliseconds) accumulated at various stages of the dive – Δt1 (post–drift dive, Triassic - Middle Jurassic) and Δt2 (Late Jurassic – Early Oligocene). (1-8) reflecting horizons: 1 – in the basement roof, 2 – in the Paleozoic complex, 3 – in the base of the Terrigenous Triassic (A1), 4 – in the base of the Middle Triassic, 5 – in the base of the Jurassic, 6 – near the roof of the Middle Jurassic (C1), 7 – in the base of the Neocomian, Aptian-Albian-Cenomanian and Turonian-Maastrichtian complexes, 8 – in the base of the Cenozoic complex, 9 – amplitudes of the largest displacements in the base of the Mesozoic-Cenozoic sedimentary cover, 10 – ruptures.

Жүктеу (350KB)
6. Fig. 5. Seismogeological section along the Kara Sea–Gydan profile ([8] with changes). The colored arrows show the thickness of sediments (milliseconds) accumulated at various stages of the dive; reflecting horizons (1-7): 1 – in the basement roof, 2 – in the Paleozoic complex, 3 – in the base of the Terrigenous Triassic (A1), 4 – in the base of the Middle Triassic, 5 – in the base of the Jurassic (a) and near roofs of the Middle Jurassic C1 (b), 6 – in the base of the Neocomian, Aptian-Albian-Cenomanian and Turonian-Maastrichtian complexes, 7 – in the base of the Cenozoic complex, 8 – ruptures.

Жүктеу (313KB)
7. 6. The structure of the upper part of the lithospheric layer of the deep sedimentary basin. 1 – sedimentary strata; 2 – the upper part of the consolidated crust (the basement of the basin); 3 – the lower part of the consolidated crust, which has experienced high-grade metamorphism with a significant increase in rock density (eclogite); 4 – the mantle in the lithospheric layer; 5 – the position of the Moho section, determined by seismic data; 6 – the interface between rocks the Earth's crust and mantle peridotites.

Жүктеу (141KB)

© Russian Academy of Sciences, 2024