Особенности полимеризации метилметакрилата в присутствии новых карборановых комплексов рутения(II) и (III) с хелатными P‒O‒P-лигандами

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Исследована радикальная полимеризация метилметакрилата по механизму с переносом атома под действием систем на основе карборановых комплексов рутения(II) и (III), содержащих хелатные P‒O‒P-лиганды различного строения. Показано, что системы на основе данных металлокомплексов, четыреххлористого углерода и изопропиламина как восстанавливающего агента способны инициировать проведение радикальной полимеризации метилметакрилата. Наиболее эффективными среди исследованных являются системы на основе рутенакарборанов, содержащих в структуре 9,9-диметил-4,5-бис-(дифенилфосфино)ксантен в качестве лиганда. Указанные соединения способны проводить процесс в контролируемом режиме, о чем свидетельствует линейное увеличение молекулярной массы полимера и снижение значений дисперсности с ростом конверсии. Протекание процесса в контролируемом режиме в соответствии с механизмом полимеризации с переносом атома подтверждается наличием на концах полимерных цепей атомов хлора, обнаруженных методом времяпролетной масс-спектрометрии с применением матрично-активированной лазерной десорбции/ионизации. Показано, что возможность координации атома рутения атомом кислорода лиганда снижает скорость процесса полимеризации и степень контроля над ним.

Полный текст

Доступ закрыт

Об авторах

Н. А. Князева

Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского

Email: grishin_i@ichem.unn.ru
Россия, 603950 Нижний Новгород, пр. Гагарина, 23

И. Д. Гришин

Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского

Автор, ответственный за переписку.
Email: grishin_i@ichem.unn.ru
Россия, 603950 Нижний Новгород, пр. Гагарина, 23

Список литературы

  1. Lorandi F., Fantin M., Matyjaszewski K. // J. Am. Chem. Soc. 2022. V. 144. № 34. P. 15413.
  2. Awad M., Dhib R., Duever T. // J. Dispersion Sci. Technol. 2023. V. 44. № 8. P. 1433.
  3. Wang J.-S., Matyjaszewski K. // J. Am. Chem. Soc. 1995. V. 117. № 20. Р. 5614.
  4. Kato M., Kamigaito M., Sawamoto M., Higashimura T. // Macromolecules. 1995. V. 28. № 5. P. 1721.
  5. Percec V., Barboiu B. // Macromolecules. 1995. V. 28. № 23. P. 7970.
  6. Zaremskii M.Yu., Bukin E.A., Mineeva K.O., Zezin S.B. // Polumer Science B. 2020. V. 62. № 6. P. 583.
  7. Fors B.P., Hawker C.J. // Angew. Chem. Int. Ed. 2012. V. 51. № 35. P. 8850.
  8. Knyaseva N.А., Grishin I.D. // Polymer Science B. 2022. V. 64. № 5. P.
  9. Bortolamei N., Isse A.A., Di Marco V.B., Gennaro A., Matyjaszewski K. // Macromolecules. 2010. V. 43. № 22. P. 9257.
  10. Pavlovskaya M.V., Kriulichev I.P., Grishin D.F. // Russ. J. Appl. Chem. 2020. V. 93. № 9. P. 1332.
  11. MeleshkoТ.К., Razina A.B., Bogorad N.N., Kurlykin M.P., Kashina A.V., Gofman I.V., Ten’Kovtsev A.V., Yakimansky A.V. // Polymer Science B. 2021. V. 63. № 4. С. 385.
  12. Vargas M.G., Aquino G.M., Lugo C.A., Morales S.L., González J.E.T., Le Lagadec R., Alexandrova L.// Eur. Polym. J. 2018. V. 108.
  13. Cruz T.R., Silva E.A., Oliveira D.P., Martins D.M., Gois P.D.S., Machado A.E.H.,. Maia P.I.S, Goi B.E., Lima-Neto B.S., Carvalho-Jr V.P. // Appl. Organomet. Chem. 2020. V. 34. № 5. P. e5602.
  14. Martínez-Cornejo V., Velázquez-Roblero J., Rosiles-González V., Correa-Duran M., Avila-Ortega A., Hernández-Núñez E., Le Lagadec R., González-Díaz M.O. // Polymers. 2020. V. 12. № 8. P. 1663.
  15. Song T., Xiang Y., Gao J., Shen X. // Polymer Science, Series B. 2023. V. 65. № 2. P. 103–110.
  16. Dadashi-Silab S., Matyjaszewski K. // Molecules. 2020. V. 25. № 7. P. 1648.
  17. Parkatzidis K., Boner S., Wang H.S., Anastasaki A. // ACS Macro Lett. 2022. V. 11. № 7. P. 841.
  18. Tong Y., Liu Y., Chen Q., Mo Y., Ma Y. // Macromolecules. 2021. V. 54. № 13. P. 6117.
  19. Grishin I.D. // Polymer Science С. 2022. V. 64. № 2. P. 92.
  20. Szczepaniak G., Jeong J., Kapil K., Dadashi-Silab S., Yerneni S.S., Ratajczyk P., Lathwal S., Schild D.J., Das S.R., Matyjaszewski K. // Chem. Sci. 2022. V. 13. № 39. P. 11540.
  21. Lorandi F., Matyjaszewski K. // Israel J. Chem. 2020. V. 60. № 1–2. P. 108.
  22. Gupta V., Bhajiwala H.M. // Polyolefins J. 2023. V. 10. № 4. P. 235.
  23. Гришин И.Д., Князева Н.А., Пенкаль А.М. // Изв. РАН. Сер. хим. 2020. Т. 8. С. 1520.
  24. Grishin I.D., Turmina E.S., D’yachihin D.I., Chizhevsky I.T., Grishin D.F. // Polymer Science B. 2014. V. 56. № 1. P. 1.
  25. Adams G.M., Weller A.S. // Coord. Chem. Rev. 2018. V. 355. P. 150.
  26. Van Leeuwen P.W.N.M., Kamer P.C.J. // Catal. Sci. Technol. 2018. V. 8. № 1. P. 26.
  27. Zimina A.M., Somov N.V., Malysheva Yu.B., Knyazeva N.A., Piskunov A.V., Grishin I.D. // Inorganics. 2022. V. 10. № 11. P. 206.
  28. Frisch M.J., Trucks G.W., Schlegel H.B., et al. Gaussian 03, Revision E.01, Gaussian, Inc., Wallingford CT, 2004.
  29. Grishin I.D., Chizhevsky I.T. // J. Organomet. Chem. 2014. V. 760. P. 24.
  30. Zimina A.M., Knyazeva N.A., Balagurova E.V., Dolgushin F.M., Somov N.V., Vorozhtsov D.L., Malysheva Yu. B., Grishin I.D. // J. Organomet. Chem. 2021. V. 946–947. P. 121908.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис.

Скачать (78KB)
3. Рис.

Скачать (234KB)
4. Схема 1.

Скачать (58KB)
5. Схема 2.

Скачать (136KB)
6. Рис. 1. МАЛДИ масс-спектр ПММА, полученного в присутствии каталитической системы на основе комплекса 2 при 80°С. [MMA] : [CCl4] : [Ru] : [i-PrNH2] = 10000 : 25 : 1 : 40. Матрица – DCTB, ионизирующий агент – трифторацетат натрия.

Скачать (349KB)
7. Рис. 2. Кинетические зависимости (а) и зависимости молекулярно-массовых характеристик полученных полимеров от конверсии (б) при полимеризации ММА при под действием каталитической системы на основе комплексов 3 (кружки) и 4 (треугольники) в присутствии 25 об. % толуола. Темные точки – М × 10–3, светлые – Ɖ; [MMA] : : [CCl4] : [Ru] : [i-PrNH2] = 10000 : 25 : 1 : 40. Т = 80°С. Пунктирная линия – теоретически рассчитанное значение молекулярной массы.

Скачать (100KB)
8. Рис. 3. Кинетические кривые полимеризации ММА под действием комплексов 5 (кружки) и 6 (треугольники) в присутствии 25 об. % толуола. [ММА] : [CCl4] : [Ru] : [i-PrNH2] = 10000 : 25 : 1 : 40. Т = 80°С.

Скачать (45KB)
9. Рис. 4.

Скачать (146KB)

© Российская академия наук, 2024