Selective Extraction of Lithium Cations From Mixture of Alkali Metal Chlorides Using Electrobaromembrane Process

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The problem of low-reagent separation of Na+, K+ and Li+ cations is becoming increasingly important in connection with the search for new technologies for the extraction of lithium from brines and the recovery of this valuable element from already used energy sources. This paper presents the results of testing the electrobaromembrane process, in which the gradients of the electric field and pressure field are directed in opposite directions. The experiments were carried out in a laboratory flow cell, the desalting and concentration chambers of which are separated by a track-etched membrane and limited by MA-41 anion-exchange membranes. The working area of each membrane is 30 cm2. The processed solution contains 70, 75 and 55 mmol/L LiCl, KCl and NaCl, respectively. It has been shown that at a current density of 11,7 mA/cm2 and a pressure difference of 0.20 bar in the desalting circuit, it is possible to ensure an accumulation rate of Li+ cations equal to 0,05 mol/(m2 h), and a rate of loss of Na+ and K+ cations from this circuit , equal to minus 0,09 and minus 0,25 mol/(m2h), respectively. Factors that can influence the efficiency of separation of Li+ and Na+, K+ are considered.

Texto integral

Acesso é fechado

Sobre autores

D. Butylskii

Kuban State University

Email: v_nikonenko@mail.ru
Rússia, 149 Stavropolskaya St., 350040 Krasnodar

V. Troitskiy

Kuban State University; Platov South-Russian State Polytechnic University (NPI)

Email: v_nikonenko@mail.ru
Rússia, 149 Stavropolskaya St., 350040 Krasnodar; 132 Prosveschenia str., 346428 Novocherkassk

N. Smirnova

Platov South-Russian State Polytechnic University (NPI)

Email: v_nikonenko@mail.ru
Rússia, 132 Prosveschenia str., 346428 Novocherkassk

N. Pismenskaya

Kuban State University

Email: v_nikonenko@mail.ru
Rússia, 149 Stavropolskaya St., 350040 Krasnodar

P. Apel

Joint Institute for Nuclear Research

Email: v_nikonenko@mail.ru
Rússia, 6 Joliot-Curie St., 141980 Dubna

I. Blonskaya

Joint Institute for Nuclear Research

Email: v_nikonenko@mail.ru
Rússia, 6 Joliot-Curie St., 141980 Dubna

V. Nikonenko

Kuban State University

Autor responsável pela correspondência
Email: v_nikonenko@mail.ru
Rússia, 149 Stavropolskaya St., 350040 Krasnodar

Bibliografia

  1. Bradley D.C., Stillings L.L., Jaskula B.W., Munk L., McCauley A.D. Lithium, 1802K, Reston, VA, 2017.
  2. Zhang Y., Yu D., Jia C., Sun L., Tong A., Wang Y., Wang Y., Huang L., Tang J. // Desalination. 2023. V. 66. P. 116891.
  3. Рябцев А. Д., Коцупало Н. П., Вахромеев А. Г., Комин М. Ф. // Рациональное освоение недр. 2013. №. 1. С. 44–51.
  4. Gabra G.G., Torma A.E. // Hydrometallurgy. 1978. V. 3. №. 1. P. 23–33.
  5. Shi D., Zhang L., Peng X., Li L., Song F., Nie F., Ji L., Zhang Y. // Desalination. 2018. V. 441. P. 44–51.
  6. Besserguenev A.V., Fogg A.M., Francis R.J., Price S.J., Hare D. O’, Isupov V.P., Tolochko B.P. // Chem. Mater. 1997. V. 9. №. 1. P. 241–247.
  7. Chitrakar R., Kanoh H., Miyai Y., Ooi K. // ChemInform. 2001. V. 32. №. 4. P. 3151–3157.
  8. Guo Y., Yu J., Su H., Lin S. // Desalination. 2001. V. 571. №. 117113.
  9. Wang J., Yue X., Wang P., Yu T., Du X., Hao X., Abudula A., Guan G. // Renew. Sust. Energ. Rev. 2022. V. 154. №. 111813.
  10. Zhang Y., Xu R., Wang L., Sun W., Guan G. // Miner. Eng. 2022. V. 180. №. 107468.
  11. Lai X., Xiong P., Zhong H. // Miner. Eng. 2020. V. 192. №. 105252.
  12. Zhu R., Wang S., Srinivasakannan C., Li S., Yin S., Zhang L., Jiang X., Zhou G., Zhang N. // Environ. Chem. Lett. 2023. V. 21. №. 3. P. 1611–1626.
  13. Lide D.R., CRC Handbook of Chemistry and Physics 86TH Edition. 2005.
  14. Wei X., Gao W., Wang Y., Wu K., Xu T. // Sep. Purif. Technol. 2022. V. 280. №. 119909.
  15. Бутыльский Д. Ю., Письменская Н. Д., Никоненко В. В. // Успехи химии. 2023. Т. 92. С. 4. (англоязычная версия: Butylskii D.Y., Dammak L., Larchet C., Pismenskaya N.D., Nikonenko V.V. // Russ. Chem. Rev. 2023. V. 92. P. 5074.)
  16. Gao S.-L., Qin Z.-X., Wang B.-F., Huang J., Xu Z.-L., Tang Y.-J. // Desalination. 2024. V. 572. №. 117142.
  17. Ying J., Lin Y., Zhang Y., Yu J. // ACS ES and T Water. 2023. V. 3. №. 7. P. 1720–1739.
  18. Wang H., Zeng G., Yang Z., Chen X., Wang L., Xiang Y., Zeng X., Feng Z., Tang B., Yu X., Zeng Y. // Sep. Purif. Technol. 2024. V. 330. №. 125254.
  19. Figueira M., Rodríguez-Jiménez D., López J., Reig M., Cortina J. L., Valderrama C. // Desalination. 2023. V. 549. №. 1116321.
  20. Bazrgar Bajestani M., Moheb A., Dinari M. // Desalination. 2020. V. 486. №. 114476.
  21. Sharma P.P., Yadav V., Rajput A., Gupta H., Saravaia H., Kulshrestha V. // Desalination. 2020. V. 496. №. 114755.
  22. Ying J., Luo M., Jin Y., Yu J. // Desalination. 2020. V. 492. №. 1146215.
  23. Brewer A.K., Madorsky S.L., Westhaver J.W. // Science. 1946. V. 104. №. 2694. P. 156 –157.
  24. Forssell P., Kontturi K. // Sep. Purif. Technol. 1983. V. 18. №. 3. P. 205 – 214.
  25. Kontturi K., Pajari H. // Sep. Purif. Technol. 1986. V. 21. №. 10. P. 1089–1099.
  26. Tang C., Bondarenko M.P., Yaroshchuk A., Bruening M.L. // J. Memb. Sci. 2021. V. 638. № 119684.
  27. Butylskii D.Y., Pismenskaya N.D., Apel P.Y., Sabbatovskiy K.G., Nikonenko V.V. // J. Memb. Sci. 2021. V. 635. №. 119449.
  28. Butylskii D., Troitskiy V., Chuprynina D., Dammak L., Larchet C., Nikonenko V. // Membranes. 2021. V. 13. №. 5. Art. 509.
  29. Сарапулова В.В., Пасечная Е.Л., Титорова В.Д., Письменская Н.Д., Апель П.Ю., Никоненко В.В. // Мембраны и мембранные технологии. 2020. Т. 10. № 5. С. 350–370. (англоязычная версия: Sarapulova V. V., Pasechnaya E.L., Titorova V.D., Pismenskaya N.D., Apel P.Y., Nikonenko V. V. // Membr. Membr. Technol. 2020. V. 2. P. 332–350.)
  30. Kozhina E., Panov D., Kovalets N., Apel P., Bedin S. // Nanotechnology. 2023. V. 35. № 3. Art. 035601.
  31. Flerov G.N., Apel P.Y., Didyk A.Y., Kuznetsov V.I., Oganesyan R.T. // Soviet At. Energy. 1989. V. 67, P. 763–70.
  32. Apel P. Y. //Encyclopedia of membrane science and technology. 2013. P. 1–25.
  33. Monopolar membranes. http://www.azotom.ru/monopolyarnye-membrany/ (accessed September 26, 2023).
  34. Сарапулова В.В., Титорова В.Д., Никоненко В.В., Письменская Н.Д. // Мембраны и мембранные технологии. 2019. Т. 9. № 3. С. 198–213. (англоязычная версия: Sarapulova V.V., Titorova V.D., Nikonenko V.V., Pismenskaya N.D. // Membr. Membr. Technol. 2019. V. 1. № 3. P. 168–182.)
  35. Белей И., Кармацких С. А., Речапов Д. А., Цыпкин Е. Б., Коростелев А. С., Антоненко Д. В. // Строительство нефтяных и газовых скважин на суше и на море. 2018. №. 4. С. 23–30.
  36. Кислый, А. Г., Бутыльский, Д. Ю., Мареев, С. А., & Никоненко, В. В. // Мембраны и мембранные технологии. 2021. Т. 11. № 2. С. 146–154. (англоязычная версия: Kislyi A.G., Butylskii D.Y., Mareev S.A., Nikonenko V.V. // Membr. Membr. Technol. 2021. V. 3. № 2. P. 131–138.)
  37. Zhao Y., Xiang X., Wang M., Wang H., Li Y., Li J., Yang H. // Desalination. 2021. V. 512. №. 115126.
  38. Tang C., Yaroshchuk A., Bruening M. L. // Chem. Commun. 2020. V. 56. №. 74. P. 10954 –10957.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Schematic diagram of the experimental setup (a): laboratory cell (1), current source (2), pumps (3), intermediate tanks of circuits I and II (4), pressure gauges (5), valve for creating excess pressure (6), intermediate tank of the electrode chamber circuits (7). Figure (b) shows a frame with a separator separating the membranes.

Baixar (451KB)
3. Fig. 2. Electrical conductivity of solutions in intermediate capacities of circuits of chambers I and II depending on the duration of the electro-baromembrane process carried out at a current density of 11.7 mA/cm2 (a) and 13.3 mA/cm2 (b). The pressure difference between chambers I and II in both experiments was 0.2 bar.

Baixar (261KB)
4. Fig. 3. Change in the number of moles of LiCl (a), KCl (b) and NaCl (c) in circuit I depending on the duration of the electrobaromembrane process carried out at a current density of 11.7 mA/cm2 (curves 1) and 13.3 mA/cm2 (curves 2). The lines in the figures serve as a guide for the eyes.

Baixar (266KB)
5. Fig. 4. Schematic representation of the distribution of concentrations and values of the velocities of movement of competing ions Li+, Na+ and K+ at the beginning (a) of the process and after 40 hours (b).

Baixar (143KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024