Ion Transport Asymmetry in Hybrid Membranes MF-4SK with Gradient Distribution of Hydrated Silicon Oxide, Including Modified Surface
- Autores: Safronova E.Y.1, Karavanova Y.A.1, Stenina I.A.1, Voropaeva D.Y.1, Safronov D.V.1, Lysova A.A.1, Krutko V.A.1, Manin A.D.1
-
Afiliações:
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
- Edição: Volume 15, Nº 1 (2025)
- Páginas: 22-32
- Seção: Articles
- URL: https://transsyst.ru/2218-1172/article/view/685290
- DOI: https://doi.org/10.31857/S2218117225010021
- EDN: https://elibrary.ru/LBBHYY
- ID: 685290
Citar
Resumo
The paper presents the results of investigation of properties of hybrid materials based on homogeneous membrane MF-4SC with gradient distribution of dopant along the thickness. Hydrated silicon oxide nanoparticles, including those with a functionalized surface containing proton acceptor groups, were used as dopant. The presence of asymmetry of diffusion permeability of HCl and NaCl solutions of the studied membranes was revealed. It is shown that the diffusion permeability depends on the orientation of the membrane with respect to the electrolyte solution and the asymmetry reaches 65%. Depending on the surface properties of the introduced silicon oxide (on the nature and size of grafted groups) the direction of preferential ion transport changes. The causes of the diffusion permeability asymmetry and factors determining its direction are described.
Palavras-chave
Texto integral

Sobre autores
E. Safronova
N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Autor responsável pela correspondência
Email: safronova@igic.ras.ru
Rússia, Leninsky Prospekt, 31, Moscow, 119991
Yu. Karavanova
N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: safronova@igic.ras.ru
Rússia, Leninsky Prospekt, 31, Moscow, 119991
I. Stenina
N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: safronova@igic.ras.ru
Rússia, Leninsky Prospekt, 31, Moscow, 119991
D. Voropaeva
N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: safronova@igic.ras.ru
Rússia, Leninsky Prospekt, 31, Moscow, 119991
D. Safronov
N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: safronova@igic.ras.ru
Rússia, Leninsky Prospekt, 31, Moscow, 119991
A. Lysova
N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: safronova@igic.ras.ru
Rússia, Leninsky Prospekt, 31, Moscow, 119991
V. Krutko
N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: safronova@igic.ras.ru
Rússia, Leninsky Prospekt, 31, Moscow, 119991
A. Manin
N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: safronova@igic.ras.ru
Rússia, Leninsky Prospekt, 31, Moscow, 119991
Bibliografia
- Jiang S., Sun H., Wang H., Ladewig B.P., Yao Z. A comprehensive review on the synthesis and applications of ion exchange membranes // Chemosphere. 2021. V. 282. 130817. https://doi.org/10.1016/J.CHEMOSPHERE.2021.130817
- Strathmann H., Grabowski A., Eigenberger G. Ion-exchange membranes in the chemical process industry // Ind. Eng. Chem. Res. 2013. V. 52. P. 10364–10379. https://doi.org/10.1021/ie4002102
- Ran J., Wu L., He Y., Yang Z., Wang Y., Jiang C., Ge L., Bakangura E., Xu T. Ion exchange membranes: New developments and applications // J. Memb. Sci. 2017. V. 522. P. 267–291. https://doi.org/10.1016/J.MEMSCI.2016.09.033
- Филиппов С.П., Ярославцев А.Б. Водородная энергетика: перспективы развития и материалы // Успехи химии. 2021. № 90. С. 627–643.
- Bakangura E., Wu L., Ge L., Yang Z., Xu T. Mixed matrix proton exchange membranes for fuel cells: State of the art and perspectives // Prog. Polym. Sci. 2016. V. 57. P. 103–152. https://doi.org/10.1016/J.PROGPOLYMSCI.2015.11.004
- Safronova E.Y., Lysova A.A., Voropaeva D.Y., Yaroslavtsev A.B. Approaches to the Modification of Perfluorosulfonic Acid Membranes // Membranes (Basel). 2023. V. 13. https://doi.org/10.3390/membranes13080721
- Zakaria Z., Shaari N., Kamarudin S.K., Bahru R., Musa M.T. A review of progressive advanced polymer nanohybrid membrane in fuel cell application // Int. J. Energy Res. 2020. V. 44. P. 8255–8295. https://doi.org/10.1002/ER.5516
- Prykhodko Y., Fatyeyeva K., Hespel L., Marais S. Progress in hybrid composite Nafion®-based membranes for proton exchange fuel cell application // Chem. Eng. J. 2020. 127329. https://doi.org/10.1016/j.cej.2020.127329
- Wong C.Y., Wong W.Y., Ramya K., Khalid M., Loh K.S., Daud W.R.W., Lim K.L., Walvekar R., Kadhum A.A.H. Additives in proton exchange membranes for low- and high-temperature fuel cell applications: A review // Int. J. Hydrogen Energy. 2019. V. 44. P. 6116–6135. https://doi.org/10.1016/J.IJHYDENE.2019.01.084
- Kim D.J., Jo M.J., Nam S.Y. A review of polymer–nanocomposite electrolyte membranes for fuel cell application // J. Ind. Eng. Chem. 2015. V. 21. P. 36–52. https://doi.org/10.1016/J.JIEC.2014.04.030
- Makhsoos A., Kandidayeni M., Pollet B.G., Boulon L. A perspective on increasing the efficiency of proton exchange membrane water electrolyzers – a review // Int. J. Hydrogen Energy. 2023. https://doi.org/10.1016/j.ijhydene.2023.01.048
- Ачох А.Р., Бондарев Д.А., Мельников С.С., Заболоцкий В.И. Избирательная проницаемость гомогенной бислойной мембраны МФ-4СК с селективным слоем из катионного полиэлектролита в смешанном растворе хлорида кальция и хлорида натрия // Мембраны и мембранные технологии. 2024. № 14. С. 358–367. https://doi.org/10.31857/S2218117224050026
- Siwy Z., Kosińska I.D., Fuliński A., Martin C.R. Asymmetric diffusion through synthetic nanopores // Phys. Rev. Lett. 2005. V. 94. 048102. https://doi.org/10.1103/PHYSREVLETT.94.048102/FIGURES/4/THUMBNAIL
- Apel P.Y., Korchev Y.E., Siwy Z., Spohr R., Yoshida M. Diode-like single-ion track membrane prepared by electro-stopping // Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 2001. V. 184. 337–346. https://doi.org/10.1016/S0168-583X(01)00722-4
- Fan H., Xu Y., Zhao F., Chen Q.B., Wang D., Wang J. A novel porous asymmetric cation exchange membrane with thin selective layer for efficient electrodialysis desalination // Chem. Eng. J. 2023. V. 472. 144856. https://doi.org/10.1016/J.CEJ.2023.144856
- Лысова А.А., Стенина И.А., Горбунова Ю.Г., Кононенко Н.А., Ярославцев А.Б. Композиционные системы полианилин/МФ-4СК с модифицированным поверхностным слоем // Электрохимия. 2011. № 47. С. 618–624.
- Loza N., Falina I.V., Kutenko N., Shkirskaya S., Loza J., Kononenko N. Bilayer Heterogeneous Cation Exchange Membrane with Polyaniline Modified Homogeneous Layer: Preparation and Electrotransport Properties // Membranes (Basel). 2023. V. 13. P. 829. https://doi.org/10.3390/membranes13100829
- Сафронова Е.Ю., Прихно И.А., Пурсели Ж., Ярославцев А.Б. Асимметрия ионного транспорта в гибридных мембранах МФ-4СК с градиентным распределением гидратированного оксида циркония // Мембраны и мембранные технологии. 2013. № 3. С. 308–313.
- Филиппов А.Н., Кононенко Н.А., Фалина И.В., Тицкая Е.В., Петрова Д.А. Электродиффузионные характеристики бислойных мембран, модифицированных галлуазитом // Коллоидный журнал. 2020. № 82. С. 106–118. https://doi.org/10.31857/S002329122001005X
- Filippov A.N., Kononenko N.A., Loza N.V., Kopitsyn D.S., Petrova D.A. Modelling of transport properties of perfluorinated one- and bilayer membranes modified by polyaniline decorated clay nanotubes // Electrochim. Acta. 2021. V. 389. 138768. https://doi.org/10.1016/J.ELECTACTA.2021.138768
- Filippov A.N. Asymmetry of current-voltage characteristics of ion-exchange membranes: Model of charge density of fixed groups linear by membrane thickness // Russ. J. Electrochem. 2017. V. 53. P. 257–269. https://doi.org/10.1134/S1023193517030053/METRICS
- Kusoglu A., Weber A.Z. New insights into perfluorinated sulfonic-acid ionomers // Chem. Rev. 2017. V. 117. P. 987–1104. https://doi.org/10.1021/acs.chemrev.6b00159
- Lim J.H., Hou J., Kim W.Y., Wi S., Lee C.H. The relationship between chemical structure of perfluorinated sulfonic acid ionomers and their membrane properties for PEMEC application // Int. J. Hydrogen Energy. 2024. V. 49. P. 794–804. https://doi.org/10.1016/J.IJHYDENE.2023.09.131
- Сафронова Е.Ю., Ильин А.Б., Лысова А.А., Ярославцев А.Б. Влияние модификации поверхности углеродсодержащими фрагментами на размер, свойства и морфологию частиц оксида кремния // Неорганические материалы. 2012. № 48. С. 437–442.
- Mikheev A.G., Safronova E.Y., Yurkov G.Y., Yaroslavtsev A.B. Hybrid materials based on MF-4SC perfluorinated sulfo cation-exchange membranes and silica with proton-acceptor properties // Mendeleev Commun. 2013. V. 23. https://doi.org/10.1016/j.mencom.2013.03.002
- Kononenko N.A., Shkirskaya S.A., Rybalko M.V., Zotova D.A. The Influence of Inert Fluoropolymer on Equilibrium and Dynamic Hydration Characteristics of MF-4SC Membrane // Colloid J. 2023. V. 85. P. 908–916. https://doi.org/10.1134/S1061933X23600732/FIGURES/7
- Novikova S.A., Safronova E.Y., Lysova A.A., Yaroslavtsev A.B. Influence of incorporated nanoparticles on the ionic conductivity of MF-4SC membrane // Mendeleev Commun. 2010. V. 20. https://doi.org/10.1016/j.mencom.2010.05.011
- Stenina I.A., Yaroslavtsev A.B. Ionic Mobility in Ion-Exchange Membranes // Membranes (Basel). 2021. V. 11. P. 198. https://doi.org/10.3390/membranes11030198
- Larchet C., Nouri S., Auclair B., Dammak L., Nikonenko V. Application of chronopotentiometry to determine the thickness of diffusion layer adjacent to an ion-exchange membrane under natural convection // Adv. Colloid Interface Sci. 2008. V. 139. P. 45–61. https://doi.org/10.1016/J.CIS.2008.01.007
- Porozhnyy M.V., Shkirskaya S.A., Butylskii D.Y., Dotsenko V.V., Safronova E.Y., Yaroslavtsev A.B., Deabate S., Huguet P., Nikonenko V.V. Physicochemical and electrochemical characterization of Nafion®-type membranes with embedded silica nanoparticles: Effect of functionalization // Electrochim. Acta. 2021. V. 370. https://doi.org/10.1016/j.electacta.2020.137689
Arquivos suplementares
