Effect of feed solution pH on the electrodialysis performance in tartrates recovery

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Resource-saving and environmentally friendly electrodialysis (ED) is finding an increasing number of applications involving the separation and purification of organic acids and the extraction of their anions from wines, juices and biochemical waste products. Gaining information about the transport of these anions, particularly tartaric acid (H2T) anions, is key to improving ED efficiency. In this study, the transport of tartrates across the CJMA-3 anion exchange membrane was investigated using voltammetry, chronopotentiometry and ED experiments. It was shown that when using a NaxH(2–x)T solution with pH 9.0, which contains only doubly charged tartrate anions T2–, the transfer patterns do not differ from those well known for strong electrolytes. If a solution has a pH of 2.5 or 3.0, it contains a mixture of H2T acid molecules and singly charged HT anions. Upon entering the membrane, HT anions dissociate. Protons are excluded from the depleted solution by the Donnan effect, and the resulting doubly charged T2– anions are transported through CJMA-3. A decrease in the concentration of HT in the near-membrane depleted solution stimulates the irreversible dissociation of H2T. Under the influence of an electric field, protons are removed from the reaction zone and move into the solution, and anions into the membrane. Therefore, the transfer of tartrates through the anion exchange membrane occurs even if the feed solution mainly contains acid molecules. The implementation of these mechanisms causes empirical limiting currents to exceed theoretical limiting currents many times over. The energy consumption for the extraction of 20% tartrates from a 0.022M solution is NaxH(2–x)T 0.22 (pH 9.0), 0.32 (pH 3.0) and 0.57(pH 2.5) kW h/kg. The duration of ED in this case increases in the series: pH 3.0 << pH 9.0 < pH 2.5.

Авторлар туралы

О. Yurchenko

Kuban State University

Хат алмасуға жауапты Автор.
Email: olesia93rus@mail.ru
Ресей, 350040, Krasnodar

К. Solonchenko

Kuban State University

Email: olesia93rus@mail.ru
Ресей, 350040, Krasnodar

N. Pismenskaya

Kuban State University

Email: olesia93rus@mail.ru
Ресей, 350040, Krasnodar

Әдебиет тізімі

  1. Kim N., Jeon J., Chen R., Su X. Chem. Eng. Res. Des., 178, 267–288 (2022). https://doi.org/10.1016/j.cherd.2021.12.009
  2. Igliński B., Kiełkowska U., Piechota G. Clean. Technol. Environ. Policy, 24 (7), 2061–2079 (2022). https://doi.org/10.1007/s10098-022-02316-y
  3. Zhang Y., Pinoy L., Meesschaert B., Van der Bruggen B., AIChE J. 57 (8), 2070 – 2078 (2011). https://doi.org/10.1002/aic.12433
  4. He J.-C., Jia Y.-X., Yan R., Wang M. J. Membr. Sci., 638, 119683 (2021). https://doi.org/10.1016/j.memsci.2021.119683
  5. Wang Q., Chen G.Q., Lin L., Li X., Kentish S.E. Sep. Purif. Technol., 279, 119739 (2021). https://doi.org/10.1016/j.seppur.2021.119739
  6. RózsenberszkiT. , Komáromy P., Hülber-Beyer É., Pesti A., Koók L., Bakonyi P., Bélafi-Bakó K., Nemestóthy N. Chem. Eng. Res. Des., 190, 187–197 (2023). https://doi.org/10.1016/j.cherd.2022.12.023
  7. Liu Y., Sun Y., Peng Z. Desalination, 537, 115866 (2022). https://doi.org/10.1016/j.desal.2022.115866
  8. Luo Y., Liu Y., Shen J., Van der Bruggen B. Membranes, 12 (9), (2022). https://doi.org/10.3390/membranes12090829
  9. Jeremias J.S.D., Lin J.-Y., Dalida M.L.P., LuM.-C. J. Environ. Chem. Eng., 11 (2), 109336 (2023). https://doi.org/10.1016/j.jece.2023.109336
  10. Silva A.F.R., Ribeiro L.A. M.C.S Amaral, Sep. Purif. Technol., 311, 123295 (2023). https://doi.org/10.1016/j.seppur.2023.123295
  11. Vecino X., Reig M., Gibert O., Valderrama C., Cortina J.L. ACS Sustain. Chem. Eng., 8 (35), 13387 – 13399 (2020). https://doi.org/10.1021/acssuschemeng.0c04166
  12. Andrés L.J., Riera F.A., Alvarez R. J. Chem. Technol. Biotechnol., 70 (3), 247 – 252 (1997). https://doi.org/10.1002/(SICI)1097-4660(199711)70:3<247::AID-JCTB763>3.0.CO;2-8
  13. Renaud V., Houde V.P., Pilon G., Varin T.V., Roblet C., Marette A., Boutin Y., Bazinet L. Int. J. Mol. Sci., 22 (21), 11537 (2021). https://doi.org/10.3390/ijms222111537
  14. Fidaleo M., Ventriglia G. Foods, 11 (12), 1770 (2022). https://doi.org/10.3390/foods11121770
  15. Wang Y., Jiang C., Bazinet L., Xu T. Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 349–381(2019). https://doi.org/10.1016/b978-0-12-815056-6.00010-3
  16. Liu G., Wu D., Chen G., Halim R., Liu J., Deng H. Sep. Purif. Technol., 263, 118403 (2021). https://doi.org/10.1016/j.seppur.2021.118403
  17. Chandra A., Bhuvanesh E.B., Chattopadhyay S. Chem. Eng. Res. Des., 178, 13–24 (2022). https://doi.org/10.1016/j.cherd.2021.11.035
  18. Chandra A., Tadimeti J.G.D., Chattopadhyay S. Chin. J. Chem. Eng., 26 (2), 278–292 (2018). https://doi.org/10.1016/j.cjche.2017.05.010
  19. Chandra A., Chattopadhyay S. Colloids Surf. A Physicochem. Eng. Asp., 589, 124395 (2020). https://doi.org/10.1016/j.colsurfa.2019.124395
  20. Laucirica G., Pérez-Mitta G., Toimil-Molares M.E., Trautmann C., Marmisollé W.A., Azzaroni O. J. Phys. Chem. C, 123, 28997–29007 (2019). https://doi.org/10.1021/acs.jpcc.9b07977
  21. Liu J., Liang J., Feng X., Cui W., Deng H., Ji Z., Zhao Y. , Guo X., Yuan J. J. Membr. Sci., 624, 119109 (2021). https://doi.org/10.1016/j.memsci.2021.119109
  22. Vásquez-Garzón M.L., Bonotto G., Marder L., Ferreira J.Z., Bernardes A.M. Desalination, 263 (1–3), 118 – 121(2010). https://doi.org/10.1016/j.desal.2010.06.047
  23. Martí-Calatayud M.C., Ruiz-García M., Pérez-Herranz V. Sep. Purif. Technol., 354, 128951 (2025). https://doi.org/10.1016/j.seppur.2024.128951
  24. Lide R. CRC Handbook of Chemistry and Physics 86TH Edition 2005–2006, 2005.
  25. Kozaderova O.A., Kim K.B., Gadzhiyevа Ch.S., Niftaliev S.I. J. Memb. Sci., 604, 118081 (2020). https://doi.org/10.1016/j.memsci.2020.118081.
  26. Vasilieva V.I., Meshcheryakova E.E., Falina I.V., Kononenko N.A., Brovkina M.A., Akberova E.M. Membr. Membr. Technol., 5, 139–147 (2023). https://doi.org/10.1134/S2517751623030083
  27. Wang Y., Zhang Z., Jiang C., Xu T. Sep. Purif. Technol., 170, 353–359 (2016). https://doi.org/10.1016/j.seppur.2016.07.002
  28. Yan H., Wang Y., Xu T. K6-5: Developing Ion Exchange Membrane for Treating High Salinity Water Using Electrodialysis. In Proceedings of the 5th International Conference on Sustainable Chemical Production Process Engineering (SCPPE), Tianjin, China, 30 July 2019; p. 65.
  29. Sarapulova V., Pismenskaya N., Titorova V., Sharafan M., Wang Y., Xu T., Zhang Y., Nikonenko V. Int. J. Mol. Sci. 22, № 3, 415 (2021). https://doi.org/10.3390/ijms22031415
  30. Ponomar M., Krasnyuk E., Butylskii D., Nikonenko V., Wang Y., Jiang C., Xu T., Pismenskaya N. Membranes, 12, 765 (2022). https://doi.org/10.3390/membranes12080765
  31. Pismenskaya N., Rybalkina O., Solonchenko K., Pasechnaya E., Sarapulova V., Wang Y., Jiang C., Xu T., Nikonenko V. Polymers, 15, 2288 (2023). https://doi.org/10.3390/polym15102288
  32. Pismenskaya N.D., Rybalkina O.A., Kozmai A.E., Tsygurina K.A., Melnikova E.D., Nikonenko V.V. J. Membr. Sci., 601, 117920 (2020). https://doi.org/10.1016/j.memsci.2020.117920
  33. Titorova V.D., Mareev S.A., Gorobchenko A.D., Gil V.V., Nikonenko V.V., Sabbatovskii K.G., Pismenskaya N.D. J. Membr. Sci., 624, 119036 (2021). https://doi.org/10.1016/j.memsci.2020.119036
  34. Sarapulova V., Nevakshenova E., Pismenskaya N., Dammak L., Nikonenko V. J. Membr. Sci., 479, 28–38 (2015). https://doi.org/10.1016/j.memsci.2015.01.015
  35. Maletzki F., Rosler H.-W., Staude E. J. Membr. Sci., 71, 105 (1992). https://doi.org/10.1016/0376-7388(92)85010-G
  36. Dukhin S.S. Adv. Colloid Interface Sci., 35, 173–196 (1991). https://doi.org/10.1016/0001-8686(91)80022-C
  37. Mishchuk N.A. Adv. Colloid Interface Sci., 160, 16–39 (2010), https://doi.org/10.1016/j.cis.2010.07.001
  38. Rubinstein I., Zaltzman B. Phys. Rev. Lett. 114, 114502 (2015). https://doi.org/10.1103/PhysRevLett.114.114502
  39. Rubinstein I., Zaltzman B. Phys. Rev. E., 62, 2238–2251 (2000). https://doi.org/10.1103/PhysRevE.62.2238
  40. Zaltzman B., Rubinstein I. J. Fluid Mech., 579, 173–226 (2007). https://doi.org/10.1017/S0022112007004880
  41. Simons R. Electrochim. Acta., 29, 151–158 (1984). https://doi.org/10.1016/0013-4686(84)87040-1
  42. Tanaka Y. Prog. Filtr. Sep., 207–284 (2015). https://doi.org/10.1016/B978-0-12-384746-1.00006-9
  43. Zabolotsky V.I., Shel’deshov N.V., Gnusin N.P. Russ. Chem. Rev., 57, 801–808 (1988). https://doi.org/10.1070/RC1988v057n08ABEH003389
  44. Rybalkina O.A., Moroz I.A., Gorobchenko A.D., Pismenskaya N.D., Nikonenko V.V. Membr. Membr. Technol., 4, 31–38 (2022). https://doi.org/10.1134/S2517751622010061
  45. Helfferich F. Ion Exchange, McGraw-Hil, New York, 1962.
  46. Rybalkina O.A., Sharafan M.V., Nikonenko V.V., Pismenskaya N.D. J. Membr. Sci., 651, 120449 (2022). https://doi.org/10.1016/j.memsci.2022.120449
  47. Zabolotskii V.I., Lebedev K.A., Shel’deshov N.V. Russ. J. Electrochem., 53 (9), 966–979 (2017). https://doi.org/10.1134/S102319351709018X
  48. Sharafan M.V., Gorobchenko A.D., Nikonenko V.V. Membr. Membr. Technol. (In press)
  49. Strnad J., Kincl M., Beneš J., Svoboda M., Vobecká L., Slouka Z. Desalination, 571, 117093 (2024). https://doi.org/10.1016/j.desal.2023.117093

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2024