Synthesis and gas transport properties of polynaphthoylenebenzimidazoles with keto- and sulfonic bridging groups

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Polynaphthoylenebenzimidazoles (PNBI) with keto-(PNBI-CO) and sulfonic (PNBI-SO2) bridge groups were obtained by solid-state polycyclization of polyaminoimides (PANI) synthesized by polycondensation of 1,4,5,8-naphthalenetetracarboxylic acid dianhydride with 3,3`,4,4`-tetraaminobenzophenone and 3,3`,4,4`-tetraaminodiphenylsulfone in N-methylpyrrolidone, respectively. The polycondensation process and resulting chemical structure of PANI and PNBI were controlled by 1H NMR, 13C NMR and IR spectroscopy. It is shown that the temperature of solid-state polycyclization change makes it possible to obtain polymers of several of cyclization degrees. The experimental values of the gas permeability and diffusion coefficients for He, H2, N2, O2, CO2, CH4 were obtained. The gas solubility coefficients and the ideal selectivity for various gas pairs were calculated. It has been established that, in terms of the permeability-selectivity ratio, completely cyclized PNBIs occupy a more favorable position compared to incompletely cyclized ones. This result is important for polymer and a method selection to develop a selective layer of new composite membranes. The gas transport characteristics achieved for competely cyclized PNBI-SO2, as well as the film-forming properties, along with the very high thermal stability of polymers of this polymer class, are interest of further expanding the range of PNBI obtained, as well as the prospects for such new polymers using of in various gas separation processes.

Full Text

Restricted Access

About the authors

A. Yu. Alentiev

A.V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences

Author for correspondence.
Email: alentiev@ips.ac.ru
Russian Federation, 119991, Moscow, Leninsky prospect, 29

I. I. Ponomarev

A.V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences; A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences

Email: alentiev@ips.ac.ru
Russian Federation, 119991, Moscow, Leninsky prospect, 29; 119991, Moscow, st. Vavilova, 28

Yu. A. Volkova

A.V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences; A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences

Email: alentiev@ips.ac.ru
Russian Federation, 119991, Moscow, Leninsky prospect, 29; 119991, Moscow, st. Vavilova, 28

R. Yu. Nikiforov

A.V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences

Email: alentiev@ips.ac.ru
Russian Federation, 119991, Moscow, Leninsky prospect, 29

D. A. Syrtsova

A.V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences

Email: alentiev@ips.ac.ru
Russian Federation, 119991, Moscow, Leninsky prospect, 29

N. A. Belov

A.V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences

Email: alentiev@ips.ac.ru
Russian Federation, 119991, Moscow, Leninsky prospect, 29

References

  1. Van Deusen R.L. // Journal of Polymer Science Part B: Polymer Letters. 1966. Vol. 4. № 3. P. 211.
  2. Volokhina A.V., Shchetinin A.M. // Fibre Chemistry. 2001. Vol. 33. № 2. P. 96.
  3. Rusanov A.L., Serkov B.B., Bulycheva E.G., Kolosova T.N., Lekae T.V., Ponomarev I.I., Matvelashvili N.G. // Makromolekulare Chemie. Macromolecular Symposia. 1993. Vol. 74. № 1. P. 189.
  4. Rusanov A.L., Komarova L.G. // Polymer Science: A Comprehensive Reference. Elsevier. 2012. P. 537.
  5. Skvortsov I.Y. Ponomarev I.I., Varfolomeeva L.A., Kuzin M.S., Razorenov D.A., Skupov K.M., Ponomarev I.I., Zuev K.V., Levin I.S., Shandryuk G.A., Kulichikhin V.G. // Polymer. 2022. Vol. 247. P. 124793.
  6. Ponomarev I.I., Volkova Yu.A., Ponomarev I.I., Razorenov D.A., Skupov K.M., Nikiforov R.Y.,Chirkov S.V., Ryzhikh V.E., Belov N.A., Alentiev A.Y. // Polymer. 2022. Vol. 238. P. 124396.
  7. Zhou W., Lu F. // Journal of Applied Polymer Science. 1995. Vol. 58. № 9. P. 1561.
  8. Robeson L.M. // Journal of Membrane Science. 1991. Vol. 62. № 2. P. 165.
  9. Алентьев А.Ю., Рыжих В.Е., Сырцова Д.А., Белов Н.А. // Успехи Химии 2023. Т. 92. № 6. С. RCR5083 (англоязычная версия: Alentiev A.Y., Ryzhikh V.E., Syrtsova D.A., Belov N.A. // Rus. Chem. Rev. 2023. Vol. 92. № 6. P. RCR5083).
  10. Аскадский А.А., Кондращенко В.И. Компьютерное материаловедение полимеров. Т. 1. Атомно-молекулярный уровень. Москва: Научный мир. 1999. 544 с.
  11. Korshak V.V., Berestneva G.L., Petrovskii P.V., Ormotsadze P.Sh., Rusanov A.L., Berlin A.M., Adyrkhayeva // Polymer Science U.S.S.R. 1981. Vol. 23. № 8. P. 1902.
  12. Пономарев И.И., Ронова И.А., Линдеман С.В., Русанов А.Л., Виноградова С.В., Стручков Ю.Т. // Высокомолекулярные соединения, серия А. 1992. Т. 34. № 4. С. 123.
  13. Берлин А.А., Лиогонький Б.И., Шамраев Г.М. // Высокомолекулярные соединения, серия B. 1968. Т. 10. № 9. С. 678.
  14. Павлова С.С.А., Тимофеева Г.И., Пономарев И.И., Русанов А.Л., Матвелашвили П.Г., Виноградова С.В. // Высокомолекулярные соединения, серия B. 1990. Т. 32. № 11. С. 842.
  15. Коршак В.В., Кособуцкий В.А., Русанов А.Л., Беляков В.К., Гусаров А.Н., Болдузев А.И., Батиров И. // Высокомолекулярные соединения, серия А. 1980. Т. 22. № 9. С. 1931.
  16. Казанцева Е.А., Алексеева С.Г., Западинский Б.И., Урман Я.Г., Лиогонький Б.И., Слоним И.Я. // Доклады Академии наук СССР. 1985. Т. 282. № 2. С. 373.
  17. Близнюк В.Н., Лохоня Н.А., Русанов А.Л., Пономарев И.И., Шилов В.В. // Высокомолекулярные соединения, серия A. 1992. Т. 34. № 1. С. 120.
  18. Robeson L.M. // Journal of Membrane Science. 2008. Vol. 320. № 1–2. P. 390.
  19. Han Y., Ho W.S.W. // Chinese Journal of Chemical Engineering. 2018. Vol. 26. № 11. P. 2238.
  20. Han Y., Ho W.S.W. // Journal of Polymer Engineering. 2020. Vol. 40. № 6. P. 529.
  21. Alentiev A.Yu., Ryzhikh V.E., Belov N.A. // Polymer Science Series C. 2021. Vol. 63. № 2. P. 181.
  22. Alentiev A.Yu. Volkov A.V., Vorotyntsev I.V., Maksimov A.L., Yaroslavtsev A.B. // Membranes and Membrane Technologies 2021. Vol. 3. № 5. P. 255.
  23. Han Y., Ho W.S.W. // Journal of Membrane Science. 2021. Vol. 628. P. 119244.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. General structural formula of partial-ladder PNBI.

Download (44KB)
3. Fig. 2. Scheme of PNBI synthesis.

Download (235KB)
4. Fig. 3. IR spectra of PANI-CO films heat-treated at 250 and 280°C and PANI-O at 350°C.

Download (333KB)
5. Fig. 4. Fragment of the Robson diagram from 1991 [8] for the oxygen – nitrogen gas pair. Circles: white – PANI-O, grey – incompletely cyclized PNBI-O [7], black – completely cyclized PNBI-O [6]. Diamonds: grey – incompletely cyclized PNBI-σ [7], black – completely cyclized PNBI-σ [6]. Square – PNBI-SO (250). Triangles: grey – PNBI-SO2 (280), black – PNBI-SO2 (320) completely cyclized.

Download (91KB)
6. Fig. 5. Fragment of the Robson diagram from 1991 [8] for the hydrogen – nitrogen gas pair. Circles: white – PANI-O, grey – incompletely cyclized PNBI-O [7], black – completely cyclized PNBI-O [6]. Diamonds: grey – incompletely cyclized PNBI-σ [7], black – completely cyclized PNBI-σ [6]. Square – PNBI-SO (250). Triangles: grey – PNBI-SO2 (280), black – completely cyclized PNBI-SO2 (320).

Download (92KB)
7. Fig. 6. Fragment of the Robson diagram from 1991 [8] for the hydrogen – methane gas pair. Circles: white – PANI-O, black – completely cyclized PNBI-O [6]. Rhombus – completely cyclized PNBI-σ [6]. Square – PNBI-SO (250). Triangles: gray – PNBI-SO2 (280), black – PNBI-SO2 (320) – completely cyclized.

Download (94KB)

Copyright (c) 2024 Russian Academy of Sciences