FIGNL1 Promotes Hepatocellular Carcinoma Formation via Remodeling ECM-receptor Interaction Pathway Mediated by HMMR

  • 作者: Wang J.1, Sun L.2, Liu Y.3, Zhang Y.2
  • 隶属关系:
    1. Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Department of Hepatobiliary Surgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China,
    2. Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Department of Hepatobiliary Surgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC,, University of Science and Technology of China,
    3. Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Department of Hepatobiliary Surgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China
  • 期: 卷 24, 编号 3 (2024)
  • 页面: 249-263
  • 栏目: Life Sciences
  • URL: https://transsyst.ru/1566-5232/article/view/644008
  • DOI: https://doi.org/10.2174/0115665232274223231017052707
  • ID: 644008

如何引用文章

全文:

详细

Background:The development of novel biomarkers is crucial for the treatment of HCC. In this study, we investigated a new molecular therapeutic target for HCC. Fidgetin-like 1 (FIGNL1) has been reported to play a vital role in lung adenocarcinoma. However, the potential function of FIGNL1 in HCC is still unknown.

Objective:This study aims to investigate the key regulatory mechanisms of FIGNL1 in the formation of HCC.

Methods:The regulatory effect of FIGNL1 on HCC was studied by lentivirus infection. In vitro, the effects of FIGNL1 on the proliferation, migration and apoptosis of cells were investigated by CCK8, colony formation assay, transwell and flow cytometry. Meanwhile, the regulation of FIGNL1 on HCC formation in vivo was studied by subcutaneous transplanted tumors. In addition, using transcriptome sequencing technology, we further explored the specific molecular mechanism of FIGNL1 regulating the formation of HCC.

Results:Functionally, we demonstrated that FIGNL1 knockdown significantly inhibited HCC cell proliferation, migration and promoted cell apoptosis in vitro. Similarly, the knockdown of FIGNL1 meaningfully weakened hepatocarcinogenesis in nude mice. Transcriptome sequencing revealed that FIGNL1 affected the expression of genes involved in extracellular matrix-receptor (ECM-receptor) interaction pathway, such as hyaluronan mediated motility receptor (HMMR). Further validation found that overexpression of HMMR based on knockdown FIGNL1 can rescue the expression abundance of related genes involved in the ECM-receptor interaction pathway.

Conclusion:Our study revealed that FIGNL1 could modulate the ECM-receptor interaction pathway through the regulation of HMMR, thus regulating the formation of HCC.

作者简介

Jiabei Wang

Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Department of Hepatobiliary Surgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China,

Email: info@benthamscience.net

Linmao Sun

Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Department of Hepatobiliary Surgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC,, University of Science and Technology of China,

Email: info@benthamscience.net

Yao Liu

Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Department of Hepatobiliary Surgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China

编辑信件的主要联系方式.
Email: info@benthamscience.net

Yunguang Zhang

Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Department of Hepatobiliary Surgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC,, University of Science and Technology of China,

编辑信件的主要联系方式.
Email: info@benthamscience.net

参考

  1. Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49. doi: 10.3322/caac.21660 PMID: 33538338
  2. Raoul JL, Forner A, Bolondi L, Cheung TT, Kloeckner R, de Baere T. Updated use of TACE for hepatocellular carcinoma treatment: How and when to use it based on clinical evidence. Cancer Treat Rev 2019; 72: 28-36. doi: 10.1016/j.ctrv.2018.11.002 PMID: 30447470
  3. Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A, Roberts LR. A global view of hepatocellular carcinoma: Trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol 2019; 16(10): 589-604. doi: 10.1038/s41575-019-0186-y PMID: 31439937
  4. Gunasekaran G, Bekki Y, Lourdusamy V, Schwartz M. Surgical treatments of hepatobiliary cancers. Hepatology 2021; 73(S1): 128-36. doi: 10.1002/hep.31325 PMID: 32438491
  5. Lee YT, Fujiwara N, Yang JD, Hoshida Y. Risk stratification and early detection biomarkers for precision HCC screening. Hepatology 2023; 78(1): 319-62. doi: 10.1002/hep.32779 PMID: 36082510
  6. Wang Z, Qin H, Liu S, Sheng J, Zhang X. Precision diagnosis of hepatocellular carcinoma. Chin Med J 2023; 136(10): 1155-65. doi: 10.1097/CM9.0000000000002641 PMID: 36939276
  7. Feng J, Dai W, Mao Y, et al. Simvastatin re-sensitizes hepatocellular carcinoma cells to sorafenib by inhibiting HIF-1α/PPAR-γ/PKM2-mediated glycolysis. J Exp Clin Cancer Res 2020; 39(1): 24. doi: 10.1186/s13046-020-1528-x PMID: 32000827
  8. Singal AG, Tayob N, Mehta A, et al. GALAD demonstrates high sensitivity for HCC surveillance in a cohort of patients with cirrhosis. Hepatology 2022; 75(3): 541-9. doi: 10.1002/hep.32185 PMID: 34618932
  9. Zhou J, Yu L, Gao X, et al. Plasma microRNA panel to diagnose hepatitis B virus-related hepatocellular carcinoma. J Clin Oncol 2011; 29(36): 4781-8. doi: 10.1200/JCO.2011.38.2697 PMID: 22105822
  10. Puchades C, Sandate CR, Lander GC. The molecular principles governing the activity and functional diversity of AAA+ proteins. Nat Rev Mol Cell Biol 2020; 21(1): 43-58. doi: 10.1038/s41580-019-0183-6 PMID: 31754261
  11. Lin J, Shorter J, Lucius AL. AAA+ proteins: One motor, multiple ways to work. Biochem Soc Trans 2022; 50(2): 895-906. doi: 10.1042/BST20200350 PMID: 35356966
  12. Carter AP, Cho C, Jin L, Vale RD. Crystal structure of the dynein motor domain. Science 2011; 331(6021): 1159-65. doi: 10.1126/science.1202393 PMID: 21330489
  13. Ranson NA, White HE, Saibil HR. Chaperonins. Biochem J 1998; 333(Pt 2): 233-42.
  14. Zhang S, Mao Y. AAA+ ATPases in protein degradation: Structures, functions and mechanisms. Biomolecules 2020; 10(4): 629. doi: 10.3390/biom10040629 PMID: 32325699
  15. Lee DG, P Bell S. ATPase switches controlling DNA replication initiation. Curr Opin Cell Biol 2000; 12(3): 280-5. doi: 10.1016/S0955-0674(00)00089-2 PMID: 10801458
  16. Zhang G, Li S, Cheng KW, Chou TF. AAA ATPases as therapeutic targets: Structure, functions, and small-molecule inhibitors. Eur J Med Chem 2021; 219: 113446. doi: 10.1016/j.ejmech.2021.113446 PMID: 33873056
  17. Park SJ, Kim SJ, Rhee Y, et al. Fidgetin-like 1 gene inhibited by basic fibroblast growth factor regulates the proliferation and differentiation of osteoblasts. J Bone Miner Res 2007; 22(6): 889-96. doi: 10.1359/jbmr.070311 PMID: 17352653
  18. Yuan J, Chen J. FIGNL1-containing protein complex is required for efficient homologous recombination repair. Proc Natl Acad Sci 2013; 110(26): 10640-5. doi: 10.1073/pnas.1220662110 PMID: 23754376
  19. Yang S, Zhang C, Cao Y, et al. FIGNL1 inhibits non-homologous chromosome association and crossover formation. Front Plant Sci 2022; 13: 945893. doi: 10.3389/fpls.2022.945893 PMID: 35898226
  20. Hu Z, Feng J, Bo W, et al. Fidgetin regulates cultured astrocyte migration by severing tyrosinated microtubules at the leading edge. Mol Biol Cell 2017; 28(4): 545-53. doi: 10.1091/mbc.e16-09-0628 PMID: 27974640
  21. Tao J, Feng C, Rolls MM. The microtubule severing protein fidgetin acts after dendrite injury to promote degeneration. J Cell Sci 2016; 129(17): jcs.188540. doi: 10.1242/jcs.188540 PMID: 27411367
  22. Fassier C, Fréal A, Gasmi L, et al. Motor axon navigation relies on Fidgetin-like 1–driven microtubule plus end dynamics. J Cell Biol 2018; 217(5): 1719-38. doi: 10.1083/jcb.201604108 PMID: 29535193
  23. L’Hôte D, Vatin M, Auer J, et al. Fidgetin-like1 is a strong candidate for a dynamic impairment of male meiosis leading to reduced testis weight in mice. PLoS One 2011; 6(11): e27582. doi: 10.1371/journal.pone.0027582 PMID: 22110678
  24. Li M, Rui Y, Peng W, et al. FIGNL1 promotes non-small cell lung cancer cell proliferation. Int J Oncol 2020; 58(1): 83-99. doi: 10.3892/ijo.2020.5154 PMID: 33367932
  25. Meng C, Yang Y, Ren P, et al. FIGNL1 is a potential biomarker of cisplatin resistance in non-small cell lung cancer. Int J Biol Markers 2022; 37(3): 260-9. doi: 10.1177/03936155221110249 PMID: 35791674
  26. Missinato MA, Tobita K, Romano N, Carroll JA, Tsang M. Extracellular component hyaluronic acid and its receptor Hmmr are required for epicardial EMT during heart regeneration. Cardiovasc Res 2015; 107(4): 487-98. doi: 10.1093/cvr/cvv190 PMID: 26156497
  27. He Z, Mei L, Connell M, Maxwell CA. Hyaluronan mediated motility receptor (HMMR) encodes an evolutionarily conserved homeostasis, mitosis, and meiosis regulator rather than a hyaluronan receptor. Cells 2020; 9(4): 819. doi: 10.3390/cells9040819 PMID: 32231069
  28. Mateo F, He Z, Mei L, et al. Modification of BRCA1-associated breast cancer risk by HMMR overexpression. Nat Commun 2022; 13(1): 1895. doi: 10.1038/s41467-022-29335-z PMID: 35393420
  29. Sun Y, Li Z, Song K. AR-mTOR-SRF axis regulates HMMR expression in human prostate cancer cells. Biomol Ther 2021; 29(6): 667-77. doi: 10.4062/biomolther.2021.040 PMID: 34099592
  30. Tilghman J, Wu H, Sang Y, et al. HMMR maintains the stemness and tumorigenicity of glioblastoma stem-like cells. Cancer Res 2014; 74(11): 3168-79. doi: 10.1158/0008-5472.CAN-13-2103 PMID: 24710409
  31. Yang M, Chen B, Kong L, et al. HMMR promotes peritoneal implantation of gastric cancer by increasing cell–cell interactions. Discover Oncology 2022; 13(1): 81. doi: 10.1007/s12672-022-00543-9 PMID: 36002694
  32. Li X, Zuo H, Zhang L, Sun Q, Xin Y, Zhang L. Validating HMMR expression and its prognostic significance in lung adenocarcinoma based on data mining and bioinformatics methods. Front Oncol 2021; 11: 720302. doi: 10.3389/fonc.2021.720302 PMID: 34527588
  33. Ma X, Xie M, Xue Z, et al. HMMR associates with immune infiltrates and acts as a prognostic biomaker in lung adenocarcinoma. Comput Biol Med 2022; 151(Pt A): 106213. doi: 10.1016/j.compbiomed.2022.106213
  34. Shang J, Zhang X, Hou G, Qi Y. HMMR potential as a diagnostic and prognostic biomarker of cancer—speculation based on a pan- cancer analysis. Front Surg 2023; 9: 998598. doi: 10.3389/fsurg.2022.998598 PMID: 36704516
  35. Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 2014; 15(12): 786-801. doi: 10.1038/nrm3904 PMID: 25415508
  36. Humphrey JD, Dufresne ER, Schwartz MA. Mechanotransduction and extracellular matrix homeostasis. Nat Rev Mol Cell Biol 2014; 15(12): 802-12. doi: 10.1038/nrm3896 PMID: 25355505
  37. Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK. Extracellular matrix structure. Adv Drug Deliv Rev 2016; 97: 4-27. doi: 10.1016/j.addr.2015.11.001 PMID: 26562801
  38. Jiang Y, Zhang H, Wang J, Liu Y, Luo T, Hua H. Targeting extracellular matrix stiffness and mechanotransducers to improve cancer therapy. J Hematol Oncol 2022; 15(1): 34. doi: 10.1186/s13045-022-01252-0 PMID: 35331296
  39. Kanchanawong P, Calderwood DA. Organization, dynamics and mechanoregulation of integrin-mediated cell–ECM adhesions. Nat Rev Mol Cell Biol 2023; 24(2): 142-61. doi: 10.1038/s41580-022-00531-5 PMID: 36168065
  40. Padhi A, Nain AS. ECM in differentiation: A review of matrix structure, composition and mechanical properties. Ann Biomed Eng 2020; 48(3): 1071-89. doi: 10.1007/s10439-019-02337-7 PMID: 31485876
  41. Romani P, Valcarcel-Jimenez L, Frezza C, Dupont S. Crosstalk between mechanotransduction and metabolism. Nat Rev Mol Cell Biol 2021; 22(1): 22-38. doi: 10.1038/s41580-020-00306-w PMID: 33188273
  42. Najafi M, Farhood B, Mortezaee K. Extracellular matrix (ECM) stiffness and degradation as cancer drivers. J Cell Biochem 2019; 120(3): 2782-90. doi: 10.1002/jcb.27681 PMID: 30321449
  43. Muncie JM, Weaver VM. The physical and biochemical properties of the extracellular matrix regulate cell fate. Curr Top Dev Biol 2018; 130: 1-37. doi: 10.1016/bs.ctdb.2018.02.002 PMID: 29853174
  44. Karamanos NK. Extracellular matrix: Key structural and functional meshwork in health and disease. FEBS J 2019; 286(15): 2826-9. doi: 10.1111/febs.14992 PMID: 31379113
  45. Lu P, Takai K, Weaver VM, Werb Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 2011; 3(12): a005058. doi: 10.1101/cshperspect.a005058 PMID: 21917992
  46. Theocharis AD, Manou D, Karamanos NK. The extracellular matrix as a multitasking player in disease. FEBS J 2019; 286(15): 2830-69. doi: 10.1111/febs.14818 PMID: 30908868
  47. Chio JCT, Punjani N, Hejrati N, Zavvarian MM, Hong J, Fehlings MG. Extracellular matrix and oxidative stress following traumatic spinal cord injury: Physiological and pathophysiological roles and opportunities for therapeutic intervention. Antioxid Redox Signal 2022; 37(1-3): 184-207. doi: 10.1089/ars.2021.0120 PMID: 34465134
  48. Fan D, Kassiri Z. Modulation of cardiac fibrosis in and beyond cells. Front Mol Biosci 2021; 8: 750626. doi: 10.3389/fmolb.2021.750626 PMID: 34778374
  49. Pouw AE, Greiner MA, Coussa RG, et al. Cell–matrix interactions in the eye: From cornea to choroid. Cells 2021; 10(3): 687. doi: 10.3390/cells10030687 PMID: 33804633
  50. Huang DQ, Mathurin P, Cortez-Pinto H, Loomba R. Global epidemiology of alcohol-associated cirrhosis and HCC: Trends, projections and risk factors. Nat Rev Gastroenterol Hepatol 2023; 20(1): 37-49. doi: 10.1038/s41575-022-00688-6 PMID: 36258033
  51. Ioannou GN. Epidemiology and risk-stratification of NAFLD-associated HCC. J Hepatol 2021; 75(6): 1476-84. doi: 10.1016/j.jhep.2021.08.012 PMID: 34453963
  52. Sugawara Y, Hibi T. Surgical treatment of hepatocellular carcinoma. Biosci Trends 2021; 15(3): 138-41. doi: 10.5582/bst.2021.01094 PMID: 33746184
  53. Bang A, Dawson LA. Radiotherapy for HCC: Ready for prime time? JHEP Reports 2019; 1(2): 131-7. doi: 10.1016/j.jhepr.2019.05.004 PMID: 32039361
  54. Hou Z, Liu J, Jin Z, et al. Use of chemotherapy to treat hepatocellular carcinoma. Biosci Trends 2022; 16(1): 31-45. doi: 10.5582/bst.2022.01044 PMID: 35173139
  55. Foerster F, Gairing SJ, Ilyas SI, Galle PR. Emerging immunotherapy for HCC: A guide for hepatologists. Hepatology 2022; 75(6): 1604-26. doi: 10.1002/hep.32447 PMID: 35253934
  56. Laface C, Fedele P, Maselli FM, et al. Targeted therapy for hepatocellular carcinoma: Old and new opportunities. Cancers 2022; 14(16): 4028. doi: 10.3390/cancers14164028 PMID: 36011021
  57. Li J, Wang X, Ren M, He S, Zhao Y. Advances in experimental animal models of hepatocellular carcinoma. Cancer Med 2023; 12(14): 15261-76. doi: 10.1002/cam4.6163 PMID: 37248746
  58. Wu Y, Zhang J, Li Q. Autophagy, an accomplice or antagonist of drug resistance in HCC? Cell Death Dis 2021; 12(3): 266. doi: 10.1038/s41419-021-03553-7 PMID: 33712559
  59. Fujiwara N, Friedman SL, Goossens N, Hoshida Y. Risk factors and prevention of hepatocellular carcinoma in the era of precision medicine. J Hepatol 2018; 68(3): 526-49. doi: 10.1016/j.jhep.2017.09.016 PMID: 28989095
  60. Meng H, Niu R, Huang C, Li J. Circular RNA as a novel biomarker and therapeutic target for HCC. Cells 2022; 11(12): 1948. doi: 10.3390/cells11121948 PMID: 35741077
  61. Yu LX, Schwabe RF. The gut microbiome and liver cancer: Mechanisms and clinical translation. Nat Rev Gastroenterol Hepatol 2017; 14(9): 527-39. doi: 10.1038/nrgastro.2017.72 PMID: 28676707
  62. Hanson PI, Whiteheart SW. AAA+ proteins: Have engine, will work. Nat Rev Mol Cell Biol 2005; 6(7): 519-29. doi: 10.1038/nrm1684 PMID: 16072036
  63. Fu J, Zhang J, Chen X, et al. ATPase family AAA domain-containing protein 2 (ATAD2): From an epigenetic modulator to cancer therapeutic target. Theranostics 2023; 13(2): 787-809. doi: 10.7150/thno.78840 PMID: 36632213
  64. Jessop M, Felix J, Gutsche I. AAA+ ATPases: Structural insertions under the magnifying glass. Curr Opin Struct Biol 2021; 66: 119-28. doi: 10.1016/j.sbi.2020.10.027 PMID: 33246198
  65. Khan YA, White KI, Brunger AT. The AAA+ superfamily: A review of the structural and mechanistic principles of these molecular machines. Crit Rev Biochem Mol Biol 2022; 57(2): 156-87. doi: 10.1080/10409238.2021.1979460 PMID: 34632886
  66. Pareek G. AAA+ proteases: The first line of defense against mitochondrial damage. PeerJ 2022; 10: e14350. doi: 10.7717/peerj.14350 PMID: 36389399
  67. Duderstadt KE, Berger JM. AAA+ ATPases in the initiation of DNA replication. Crit Rev Biochem Mol Biol 2008; 43(3): 163-87. doi: 10.1080/10409230802058296 PMID: 18568846
  68. Carter AP, Vale RD. Communication between the AAA+ ring and microtubule-binding domain of dynein. This paper is one of a selection of papers published in this special issue entitled 8th International Conference on AAA Proteins and has undergone the Journal’s usual peer review process. Biochem Cell Biol 2010; 88(1): 15-21. doi: 10.1139/O09-127 PMID: 20130675
  69. Bouchnak I, van Wijk KJ. Structure, function, and substrates of Clp AAA+ protease systems in cyanobacteria, plastids, and apicoplasts: A comparative analysis. J Biol Chem 2021; 296: 100338. doi: 10.1016/j.jbc.2021.100338 PMID: 33497624
  70. Dong Z, Chen X, Li Y, Zhuo R, Lai X, Liu M. Microtubule severing protein fignl2 contributes to endothelial and neuronal branching in zebrafish development. Front Cell Dev Biol 2021; 8: 593234. doi: 10.3389/fcell.2020.593234 PMID: 33585441
  71. Shou HF, Jin Z, Yu Y, Lai YC, Wu Q, Gao LL. Microtubule-severing protein Fidgetin-like 1 promotes spindle organization during meiosis of mouse oocytes. Zygote 2022; 30(6): 872-81. doi: 10.1017/S0967199422000417 PMID: 36148793
  72. Li M, Zhen Z, Zhong M, Ye L, Ma X. FIGNL1 expression and its prognostic significance in pan-cancer analysis. Comb Chem High Throughput Screen 2022; 25(13): 2180-90. doi: 10.2174/1386207325666220301110517 PMID: 35232348
  73. Ma J, Li J, Yao X, et al. FIGNL1 is overexpressed in small cell lung cancer patients and enhances NCI-H446 cell resistance to cisplatin and etoposide. Oncol Rep 2017; 37(4): 1935-42. doi: 10.3892/or.2017.5483 PMID: 28260065
  74. Huang J, Zhang L, Wan D, et al. Extracellular matrix and its therapeutic potential for cancer treatment. Signal Transduct Target Ther 2021; 6(1): 153. doi: 10.1038/s41392-021-00544-0 PMID: 33888679
  75. Karamanos NK, Piperigkou Z, Passi A, Götte M, Rousselle P, Vlodavsky I. Extracellular matrix-based cancer targeting. Trends Mol Med 2021; 27(10): 1000-13. doi: 10.1016/j.molmed.2021.07.009 PMID: 34389240
  76. Lu P, Weaver VM, Werb Z. The extracellular matrix: A dynamic niche in cancer progression. J Cell Biol 2012; 196(4): 395-406. doi: 10.1083/jcb.201102147 PMID: 22351925
  77. Schaefer L, Reinhardt DP. Special issue: Extracellular matrix: Therapeutic tools and targets in cancer treatment. Adv Drug Deliv Rev 2016; 97: 1-3. doi: 10.1016/j.addr.2016.01.001 PMID: 26872878

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024