CRISPR-Based Therapies: Revolutionizing Drug Development and Precision Medicine


Cite item

Full Text

Abstract

With the discovery of CRISPR-Cas9, drug development and precision medicine have undergone a major change. This review article looks at the new ways that CRISPR-based therapies are being used and how they are changing the way medicine is done. CRISPR technology's ability to precisely and flexibly edit genes has opened up new ways to find, validate, and develop drug targets. Also, it has made way for personalized gene therapies, precise gene editing, and advanced screening techniques, all of which hold great promise for treating a wide range of diseases. In this article, we look at the latest research and clinical trials that show how CRISPR could be used to treat genetic diseases, cancer, infectious diseases, and other hard-to-treat conditions. However, ethical issues and problems with regulations are also discussed in relation to CRISPR-based therapies, which shows how important it is to use them safely and responsibly. As CRISPR continues to change how drugs are made and used, this review shines a light on the amazing things that have been done and what the future might hold in this rapidly changing field.

About the authors

Dilip Kumar Chanchal

Department of Pharmacy, Smt. Vidyawati College of Pharmacy

Author for correspondence.
Email: info@benthamscience.net

Jitendra Chaudhary

Department of Pharmacy, Smt. Vidyawati College of Pharmacy

Email: info@benthamscience.net

Pushpendra Kumar

Faculty of Pharmacy, Uttar Pradesh University of Medical Science

Email: info@benthamscience.net

Neha Agnihotri

Department of Pharmacy, Maharana Pratap College of Pharmacy

Email: info@benthamscience.net

Prateek Porwal

Glocal School of Pharmacy, Glocal University Mirzapur Pole

Email: info@benthamscience.net

References

  1. Labanca N, Pereira G, Watson M, et al. Transforming innovation for decarbonisation? Insights from combining complex systems and social practice perspectives. Energy Res Soc Sci 2020; 65: 101452. doi: 10.1016/j.erss.2020.101452
  2. Wang X, Xiong E, Tian T, et al. Clustered regularly interspaced short palindromic repeats/Cas9-mediated lateral flow nucleic acid assay. ACS Nano 2020; 14(2): 2497-508. doi: 10.1021/acsnano.0c00022 PMID: 32045522
  3. Harry AA. AI’s healing touch: Examining machine learning’s transformative effects on healthcare. BULLET : J Multidisiplin Ilmu 2023; 2(4): 1134-45.
  4. Ansori AN, Antonius Y, Susilo RJ, et al. Application of CRISPR- Cas9 genome editing technology in various fields: A review. Narra J 2023; 2(4)
  5. Carey N. Hacking the Code of Life: How gene editing will rewrite our futures Icon Books. 2019.
  6. Lee J. The CRISPR revolution in genome engineering: Perspectives from religious ethics. J Relig Ethics 2022; 50(3): 333-60. doi: 10.1111/jore.12402
  7. Schmeink L. Biopunk dystopias: Genetic Engineering, Society and science fiction Liverpool University Press. 2017.
  8. Zhang H, Qin C, An C, et al. Application of the CRISPR/Cas9-based gene editing technique in basic research, diagnosis, and therapy of cancer. Mol Cancer 2021; 20(1): 126. doi: 10.1186/s12943-021-01431-6 PMID: 34598686
  9. Aminoff EM, Balslev D, Borroni P, et al. The landscape of cognitive neuroscience: Challenges, rewards, and new perspectives. IRIS Institutional Research Information System - AIR Archivio Istituzionale della Ricerca. 2009; pp.1253-1260.
  10. Mace FC, Critchfield TS. Translational research in behavior analysis: Historical traditions and imperative for the future. J Exp Anal Behav 2010; 93(3): 293-312. doi: 10.1901/jeab.2010.93-293 PMID: 21119847
  11. Bhardwaj S, Kesari KK, Rachamalla M, et al. CRISPR/Cas9 gene editing: New hope for Alzheimer’s disease therapeutics. J Adv Res 2022; 40: 207-21. doi: 10.1016/j.jare.2021.07.001 PMID: 36100328
  12. Bauer DC, Wilson LO, Twine NA. Artificial Intelligence in Medicine: Applications, Limitations and Future Directions. Singapore: Springer Nature Singapore 2022; pp. 101-20.
  13. Nordberg A, Minssen T, Holm S, Horst M, Mortensen K, Møller BL. Cutting edges and weaving threads in the gene editing (Я)evolution: Reconciling scientific progress with legal, ethical, and social concerns. J Law Biosci 2018; 5(1): 35-83. doi: 10.1093/jlb/lsx043 PMID: 29707216
  14. Nierzwicki Ł, Arantes PR, Saha A, Palermo G. Establishing the allosteric mechanism in CRISPR-CAS9. Wiley Interdiscip Rev Comput Mol Sci 2021; 11(3): e1503. doi: 10.1002/wcms.1503 PMID: 34322166
  15. Tian P, Wang J, Shen X, Rey JF, Yuan Q, Yan Y. Fundamental CRISPR-Cas9 tools and current applications in microbial systems. Synth Syst Biotechnol 2017; 2(3): 219-25. doi: 10.1016/j.synbio.2017.08.006 PMID: 29318202
  16. Botelho A. The insights of radical science in the CRISPR gene-editing era: A history of science for the people and the cambridge recombinant DNA controversy. Sci Cult 2021; 30(1): 74-103. doi: 10.1080/09505431.2019.1623190 PMID: 34239225
  17. Kelley ML, Strezoska Ž, He K, Vermeulen A, Smith AB. Versatility of chemically synthesized guide RNAs for CRISPR-Cas9 genome editing. J Biotechnol 2016; 233: 74-83. doi: 10.1016/j.jbiotec.2016.06.011 PMID: 27374403
  18. Christie KA, Guo JA, Silverstein RA, et al. Precise DNA cleavage using CRISPR-SpRYgests. Nat Biotechnol 2023; 41(3): 409-16. doi: 10.1038/s41587-022-01492-y PMID: 36203014
  19. Koerner A, Kratzsch J, Kiess W. Adipocytokines: Leptin-the classical, resistin-the controversical, adiponectin-the promising, and more to come. Best Pract Res Clin Endocrinol Metab 2005; 19(4): 525-46. doi: 10.1016/j.beem.2005.07.008 PMID: 16311215
  20. Zheng N, Xu Y, Zhao Q, Xie T. Dynamic covalent polymer networks: A molecular platform for designing functions beyond chemical recycling and self-healing. Chem Rev 2021; 121(3): 1716-45. doi: 10.1021/acs.chemrev.0c00938 PMID: 33393759
  21. Jia HP, Quadrelli EA. Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: relevance of metal hydride bonds and dihydrogen. Chem Soc Rev 2014; 43(2): 547-64. doi: 10.1039/C3CS60206K PMID: 24108246
  22. Hanamirian MA Jr. Analyzing the potential impact and ethical questions surrounding CRISPR-Cas9 in embryonic genome editing. Wake Forest University 2018.
  23. Wang JY, Doudna JA. CRISPR technology: A decade of genome editing is only the beginning. Science 2023; 379(6629): eadd8643. doi: 10.1126/science.add8643 PMID: 36656942
  24. Termanini R. Biomedical Defense Principles to Counter DNA Deep Hacking Academic Press. 2022.
  25. Hernando-Rodríguez B, Artal-Sanz M. Mitochondrial quality control mechanisms and the PHB (Prohibitin) complex. Cells 2018; 7(12): 238. doi: 10.3390/cells7120238 PMID: 30501123
  26. Yousefzadeh MJ, Wyatt DW, Takata K, et al. Mechanism of suppression of chromosomal instability by DNA polymerase POLQ. PLoS Genet 2014; 10(10): e1004654. doi: 10.1371/journal.pgen.1004654 PMID: 25275444
  27. Jacobi AM, Rettig GR, Turk R, et al. Simplified CRISPR tools for efficient genome editing and streamlined protocols for their delivery into mammalian cells and mouse zygotes. Methods 2017; 121-122: 16-28. doi: 10.1016/j.ymeth.2017.03.021 PMID: 28351759
  28. Marya R, Patel R. Inflamed: Deep medicine and the anatomy of injustice Penguin UK. 2021.
  29. Bernhardt HS. The RNA world hypothesis: The worst theory of the early evolution of life (except for all the others)a. Biol Direct 2012; 7(1): 23. doi: 10.1186/1745-6150-7-23 PMID: 22793875
  30. Moradpour M, Abdulah SNA. CRISPR / DC as9 platforms in plants: Strategies and applications beyond genome editing. Plant Biotechnol J 2020; 18(1): 32-44. doi: 10.1111/pbi.13232 PMID: 31392820
  31. Resources N. Future genetic-engineering technologies. Genetically engineered crops: Experiences and prospects National Academies Press (US). 2016.
  32. Li T, Yang Y, Qi H, et al. CRISPR/Cas9 therapeutics: Progress and prospects. Signal Transduct Target Ther 2023; 8(1): 36. doi: 10.1038/s41392-023-01309-7 PMID: 36646687
  33. Kitcher P. Moral progress. Oxford University Press 2021. doi: 10.1093/oso/9780197549155.001.0001
  34. Happe KE. The material gene: Gender, race, and heredity after the human genome project. NYU Press 2013.
  35. Mitra S, Anand U, Ghorai M, et al. Genome editing technologies, mechanisms and improved production of therapeutic phytochemicals: Opportunities and prospects. Biotechnol Bioeng 2023; 120(1): 82-94. doi: 10.1002/bit.28260 PMID: 36224758
  36. Baylis F. Altered inheritance: CRISPR and the ethics of human genome editing. Harvard University Press 2019.
  37. González-Rosa JM. Zebrafish models of cardiac disease: From fortuitous mutants to precision medicine. Circ Res 2022; 130(12): 1803-26. doi: 10.1161/CIRCRESAHA.122.320396 PMID: 35679360
  38. Moffat JG, Vincent F, Lee JA, Eder J, Prunotto M. Opportunities and challenges in phenotypic drug discovery: An industry perspective. Nat Rev Drug Discov 2017; 16(8): 531-43. doi: 10.1038/nrd.2017.111 PMID: 28685762
  39. Fellmann C, Gowen BG, Lin PC, Doudna JA, Corn JE. Cornerstones of CRISPR–Cas in drug discovery and therapy. Nat Rev Drug Discov 2017; 16(2): 89-100. doi: 10.1038/nrd.2016.238 PMID: 28008168
  40. Carneiro BA, El-Deiry WS. Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol 2020; 17(7): 395-417. doi: 10.1038/s41571-020-0341-y PMID: 32203277
  41. Sajja H, East M, Mao H, Wang Y, Nie S, Yang L. Development of multifunctional nanoparticles for targeted drug delivery and noninvasive imaging of therapeutic effect. Curr Drug Discov Technol 2009; 6(1): 43-51. doi: 10.2174/157016309787581066 PMID: 19275541
  42. Tyagi S, Kumar R, Kumar V, Won SY, Shukla P. Engineering disease resistant plants through CRISPR-Cas9 technology. GM Crops Food 2021; 12(1): 125-44. doi: 10.1080/21645698.2020.1831729 PMID: 33079628
  43. Go DE, Stottmann RW. The impact of CRISPR/Cas9-based genomic engineering on biomedical research and medicine. Curr Mol Med 2016; 16(4): 343-52. doi: 10.2174/1566524016666160316150847 PMID: 26980700
  44. Vogel KM, Ouagrham-Gormley SB. Anticipating emerging biotechnology threats. Politics Life Sci 2018; 37(2): 203-19. doi: 10.1017/pls.2018.21 PMID: 31120699
  45. Frazer KA, Murray SS, Schork NJ, Topol EJ. Human genetic variation and its contribution to complex traits. Nat Rev Genet 2009; 10(4): 241-51. doi: 10.1038/nrg2554 PMID: 19293820
  46. Ludi Z, Sule AA, Samy RP, et al. Diagnosis and biomarkers for ocular tuberculosis: From the present into the future. Theranostics 2023; 13(7): 2088-113. doi: 10.7150/thno.81488 PMID: 37153734
  47. Patra P, Das M, Kundu P, Ghosh A. Recent advances in systems and synthetic biology approaches for developing novel cell-factories in non-conventional yeasts. Biotechnol Adv 2021; 47: 107695. doi: 10.1016/j.biotechadv.2021.107695 PMID: 33465474
  48. Nayak V, Patra S, Singh KRB, et al. Advancement in precision diagnosis and therapeutic for triple-negative breast cancer: Harnessing diagnostic potential of CRISPR-cas & engineered CAR T- cells mediated therapeutics. Environ Res 2023; 235: 116573. doi: 10.1016/j.envres.2023.116573 PMID: 37437865
  49. Haggarty SJ, Karmacharya R, Perlis RH. Advances toward precision medicine for bipolar disorder: Mechanisms & molecules. Mol Psychiatry 2021; 26(1): 168-85. doi: 10.1038/s41380-020-0831-4 PMID: 32636474
  50. Doerflinger M, Forsyth W, Ebert G, Pellegrini M, Herold MJ. CRISPR/Cas9-The ultimate weapon to battle infectious diseases? Cell Microbiol 2017; 19(2): e12693. doi: 10.1111/cmi.12693 PMID: 27860197
  51. Liu Y, Yu C, Daley TP, et al. CRISPR activation screens systematically identify factors that drive neuronal fate and reprogramming. Cell Stem Cell 2018; 23(5): 758-771.e8. doi: 10.1016/j.stem.2018.09.003 PMID: 30318302
  52. Momen-Roknabadi A, Oikonomou P, Zegans M, Tavazoie S. An inducible CRISPR interference library for genetic interrogation of Saccharomyces cerevisiae biology. Commun Biol 2020; 3(1): 723. doi: 10.1038/s42003-020-01452-9 PMID: 33247197
  53. Castells-Roca L, Tejero E, Rodríguez-Santiago B, Surrallés J. CRISPR screens in synthetic lethality and combinatorial therapies for cancer. Cancers 2021; 13(7): 1591. doi: 10.3390/cancers13071591 PMID: 33808217
  54. Savic D, Partridge EC, Newberry KM, et al. CETCh-seq: CRISPR epitope tagging ChIP-seq of DNA-binding proteins. Genome Res 2015; 25(10): 1581-9. doi: 10.1101/gr.193540.115 PMID: 26355004
  55. Shin JW, Kim KH, Chao MJ, et al. Permanent inactivation of Huntington’s disease mutation by personalized allele-specific CRISPR/Cas9. Hum Mol Genet 2016; 25(20): ddw286. doi: 10.1093/hmg/ddw286 PMID: 28172889
  56. Hong A. CRISPR in personalized medicine: Industry perspectives in gene editing. Semin Perinatol 2018; 42(8): 501-7.
  57. Chen Y, Zhang Y. Application of the CRISPR/Cas9 system to drug resistance in breast cancer. Adv Sci 2018; 5(6): 1700964. doi: 10.1002/advs.201700964 PMID: 29938175
  58. Iacobas DA, Mgbemena VE, Iacobas S, Menezes KM, Wang H, Saganti PB. Genomic fabric remodeling in metastatic clear cell renal cell carcinoma (ccRCC): A new paradigm and proposal for a personalized gene therapy approach. Cancers 2020; 12(12): 3678. doi: 10.3390/cancers12123678 PMID: 33302383
  59. Balistreri CR, Candore G, Lio D, Carruba G. Prostate cancer: from the pathophysiologic implications of some genetic risk factors to translation in personalized cancer treatments. Cancer Gene Ther 2014; 21(1): 2-11. doi: 10.1038/cgt.2013.77 PMID: 24407349
  60. Li Y, Chan L, Nguyen HV, Tsang SH. Personalized medicine: Cell and gene therapy based on patient-specific iPSC-derived retinal pigment epithelium cells. Adv Exp Med Biol 2016; 854: 549-55. doi: 10.1007/978-3-319-17121-0_73
  61. Chin-Yee B, Upshur R. Three problems with big data and artificial intelligence in medicine. Perspect Biol Med 2019; 62(2): 237-56. doi: 10.1353/pbm.2019.0012 PMID: 31281120
  62. Jasanoff S, Hurlbut JB, Saha K. CRISPR democracy: Gene editing and the need for inclusive deliberation. Issues Sci Technol 2015; 32(1): 25-32.
  63. Knowles L, Luth W, Bubela T. Paving the road to personalized medicine: recommendations on regulatory, intellectual property and reimbursement challenges. J Law Biosci 2017; 4(3): 453-506. doi: 10.1093/jlb/lsx030 PMID: 29868182
  64. Marinko JT, Huang H, Penn WD, Capra JA, Schlebach JP, Sanders CR. Folding and misfolding of human membrane proteins in health and disease: From single molecules to cellular proteostasis. Chem Rev 2019; 119(9): 5537-606. doi: 10.1021/acs.chemrev.8b00532 PMID: 30608666
  65. Hine D, Kapeleris J. Innovation and entrepreneurship in biotechnology, an international perspective: Concepts, theories and cases Edward Elgar Publishing. 2006. doi: 10.4337/9781845428853
  66. Betz UAK, Arora L, Assal RA, et al. Game changers in science and technology - now and beyond. Technol Forecast Soc Change 2023; 193: 122588. doi: 10.1016/j.techfore.2023.122588
  67. Ureña-Bailén G, Antony JS, Hou Y, et al. CRISPR-/Cas9 based genome editing for treating genetic disorders and diseases 1st ed 2022; 193: 224-59.
  68. Pacher M, Puchta H. From classical mutagenesis to nuclease-based breeding - directing natural DNA repair for a natural end-product. Plant J 2017; 90(4): 819-33. doi: 10.1111/tpj.13469 PMID: 28027431
  69. de la Torre JC. Alzheimer’s disease is incurable but preventable. J Alzheimers Dis 2010; 20(3): 861-70. doi: 10.3233/JAD-2010-091579 PMID: 20182017
  70. Chira S, Nutu A, Isacescu E, et al. Genome editing approaches with CRISPR/Cas9 for cancer treatment: Critical appraisal of preclinical and clinical utility, challenges, and future research. Cells 2022; 11(18): 2781. doi: 10.3390/cells11182781 PMID: 36139356
  71. Desine S, Hollister BM, Abdallah KE, Persaud A, Hull SC, Bonham VL. The meaning of informed consent: Genome editing clinical trials for sickle cell disease. AJOB Empir Bioeth 2020; 11(4): 195-207. doi: 10.1080/23294515.2020.1818876 PMID: 33044907
  72. Chien Y, Hsiao YJ, Chou SJ, et al. Nanoparticles-mediated CRISPR-Cas9 gene therapy in inherited retinal diseases: Applications, challenges, and emerging opportunities. J Nanobiotechnology 2022; 20(1): 511. doi: 10.1186/s12951-022-01717-x PMID: 36463195
  73. DeLancey JOL, Low L, Miller JM, Patel DA, Tumbarello JA. Graphic integration of causal factors of pelvic floor disorders: An integrated life span model. Am J Obstet Gynecol 2008; 199(6): 610.e1-5. doi: 10.1016/j.ajog.2008.04.001 PMID: 18533115
  74. Rezalotfi A, Fritz L, Förster R, Bošnjak B. Challenges of CRISPR-based gene editing in primary T cells. Int J Mol Sci 2022; 23(3): 1689. doi: 10.3390/ijms23031689 PMID: 35163611
  75. Setton J, Zinda M, Riaz N, et al. Synthetic lethality in cancer therapeutics: The next generation. Cancer Discov 2021; 11(7): 1626-35. doi: 10.1158/2159-8290.CD-20-1503 PMID: 33795234
  76. Kirksey E. The mutant project: inside the global race to genetically modify humans Policy Press. 2021.
  77. Doudna J, Sternberg S. A crack in creation: The new power to control evolution Random House. 2017.
  78. Kwon S, Shin HY. Advanced CRISPR-Cas effector enzyme-based diagnostics for infectious diseases, including COVID-19. Life 2021; 11(12): 1356. doi: 10.3390/life11121356 PMID: 34947888
  79. Brown WF. The evolution of the cosmos, life, humans, culture and religion and a look into the future Friesen Press. 2016.
  80. Chan YT, Lu Y, Wu J, et al. CRISPR-Cas9 library screening approach for anti-cancer drug discovery: Overview and perspectives. Theranostics 2022; 12(7): 3329-44. doi: 10.7150/thno.71144 PMID: 35547744
  81. Zhou L, Peng R, Zhang R, Li J. The applications of CRISPR /Cas system in molecular detection. J Cell Mol Med 2018; 22(12): 5807-15. doi: 10.1111/jcmm.13925 PMID: 30338908
  82. Shahin RK, Elkady MA, Abulsoud AI, et al. miRNAs orchestration of gallbladder cancer – Particular emphasis on diagnosis, progression and drug resistance. Pathol Res Pract 2023; 248: 154684. doi: 10.1016/j.prp.2023.154684 PMID: 37454489
  83. Pugh KJ. Transformative science education: Change how your students experience the world Teachers College Press. 2020.
  84. Califano A, Alvarez MJ. The recurrent architecture of tumour initiation, progression and drug sensitivity. Nat Rev Cancer 2017; 17(2): 116-30. doi: 10.1038/nrc.2016.124 PMID: 27977008
  85. Coker H, Wei G, Brockdorff N. m6A modification of non-coding RNA and the control of mammalian gene expression. Biochim Biophys Acta Gene Regul Mech 2019; 1862(3): 310-8. doi: 10.1016/j.bbagrm.2018.12.002 PMID: 30550772
  86. Kitano H. Nobel turing challenge: Creating the engine for scientific discovery. NPJ Syst Biol Appl 2021; 7: 29.
  87. Ancos-Pintado R, Bragado-García I, Morales ML, et al. High-throughput CRISPR screening in hematological neoplasms. Cancers 2022; 14(15): 3612. doi: 10.3390/cancers14153612 PMID: 35892871
  88. Huang R, Zhou PK. DNA damage repair: Historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct Target Ther 2021; 6(1): 254. doi: 10.1038/s41392-021-00648-7 PMID: 34238917
  89. Whetzel PL, Brinkman RR, Causton HC, et al. Development of FuGO: An ontology for functional genomics investigations. OMICS 2006; 10(2): 199-204. doi: 10.1089/omi.2006.10.199 PMID: 16901226
  90. Carolus H, Pierson S, Lagrou K, Dijck P. Amphotericin B and other polyenes—Discovery, clinical use, mode of action and drug resistance. J Fungi 2020; 6(4): 321. doi: 10.3390/jof6040321 PMID: 33261213
  91. Sherman BT, Hao M, Qiu J, et al. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res 2022; 50(W1): W216-21. doi: 10.1093/nar/gkac194 PMID: 35325185
  92. Swinnen G, Goossens A, Pauwels L. Lessons from domestication: targeting cis-regulatory elements for crop improvement. Trends Plant Sci 2016; 21(6): 506-15. doi: 10.1016/j.tplants.2016.01.014 PMID: 26876195
  93. Boone C, Bussey H, Andrews BJ. Exploring genetic interactions and networks with yeast. Nat Rev Genet 2007; 8(6): 437-49. doi: 10.1038/nrg2085 PMID: 17510664
  94. Lai Q, Wu M, Wang R, et al. Cryptophycin-55/52 based antibody- drug conjugates: Synthesis, efficacy, and mode of action studies. Eur J Med Chem 2020; 199: 112364. doi: 10.1016/j.ejmech.2020.112364 PMID: 32402935
  95. Güell O, Sagués F, Serrano MÁ. Essential plasticity and redundancy of metabolism unveiled by synthetic lethality analysis. PLOS Comput Biol 2014; 10(5): e1003637. doi: 10.1371/journal.pcbi.1003637 PMID: 24854166
  96. Downey JM, Krieg T, Cohen MV. Mapping preconditioning’s signaling pathways: An engineering approach. Ann N Y Acad Sci 2008; 1123(1): 187-96. doi: 10.1196/annals.1420.022 PMID: 18375591
  97. Barrangou R, Birmingham A, Wiemann S, Beijersbergen RL, Hornung V, Smith AB. Advances in CRISPR-Cas9 genome engineering: Lessons learned from RNA interference. Nucleic Acids Res 2015; 43(7): 3407-19. doi: 10.1093/nar/gkv226 PMID: 25800748
  98. Kawall K, Cotter J, Then C. Broadening the GMO risk assessment in the EU for genome editing technologies in agriculture. Environ Sci Eur 2020; 32(1): 106. doi: 10.1186/s12302-020-00361-2
  99. Kuzmin E, Rahman M, VanderSluis B, et al. τ-SGA: Synthetic genetic array analysis for systematically screening and quantifying trigenic interactions in yeast. Nat Protoc 2021; 16(2): 1219-50. doi: 10.1038/s41596-020-00456-3 PMID: 33462440
  100. Bhattacharjee G, Gohil N, Khambhati K, et al. Current approaches in CRISPR-Cas9 mediated gene editing for biomedical and therapeutic applications. J Control Release 2022; 343: 703-23. doi: 10.1016/j.jconrel.2022.02.005 PMID: 35149141
  101. Todorov H, Saeys Y. Computational approaches for high-throughput single-cell data analysis. FEBS J 2019; 286(8): 1451-67. doi: 10.1111/febs.14613 PMID: 30058136
  102. Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol 2020; 38(7): 824-44. doi: 10.1038/s41587-020-0561-9 PMID: 32572269
  103. Zhang LV, King OD, Wong SL, et al. Motifs, themes and thematic maps of an integrated Saccharomyces cerevisiae interaction network. J Biol 2005; 4(2): 6. doi: 10.1186/jbiol23 PMID: 15982408
  104. Vlachavas EI, Bohn J, Ückert F, Nürnberg S. A detailed catalogue of multi-omics methodologies for identification of putative biomarkers and causal molecular networks in translational cancer research. Int J Mol Sci 2021; 22(6): 2822. doi: 10.3390/ijms22062822 PMID: 33802234
  105. Samadian H, Jafari S, Sepand MR, et al. 3D bioprinting technology to mimic the tumor microenvironment: Tumor-on-a-chip concept. Mater Today Adv 2021; 12: 100160.
  106. Tycko J, Wainberg M, Marinov GK, et al. Mitigation of off-target toxicity in CRISPR-Cas9 screens for essential non-coding elements. Nat Commun 2019; 10(1): 4063. doi: 10.1038/s41467-019-11955-7 PMID: 31492858
  107. Gupta R, Srivastava D, Sahu M, Tiwari S, Ambasta RK, Kumar P. Artificial intelligence to deep learning: Machine intelligence approach for drug discovery. Mol Divers 2021; 25(3): 1315-60. doi: 10.1007/s11030-021-10217-3 PMID: 33844136
  108. Nidhi S, Anand U, Oleksak P, et al. Novel CRISPR–Cas systems: An updated review of the current achievements, applications, and future research perspectives. Int J Mol Sci 2021; 22(7): 3327. doi: 10.3390/ijms22073327 PMID: 33805113
  109. Kang XJ, Caparas CIN, Soh BS, Fan Y. Addressing challenges in the clinical applications associated with CRISPR/Cas9 technology and ethical questions to prevent its misuse. Protein Cell 2017; 8(11): 791-5. doi: 10.1007/s13238-017-0477-4 PMID: 28986765
  110. Martinez-Lage M, Puig-Serra P, Menendez P, Torres-Ruiz R, Rodriguez-Perales S. CRISPR/Cas9 for cancer therapy: Hopes and challenges. Biomedicines 2018; 6(4): 105. doi: 10.3390/biomedicines6040105 PMID: 30424477
  111. Chen M, Mao A, Xu M, Weng Q, Mao J, Ji J. CRISPR-Cas9 for cancer therapy: Opportunities and challenges. Cancer Lett 2019; 447: 48-55. doi: 10.1016/j.canlet.2019.01.017 PMID: 30684591
  112. Zhang X. Development of CRISPR-mediated nucleic acid detection technologies and their applications in the livestock industry. Genes 2022; 13(11): 2007. doi: 10.3390/genes13112007 PMID: 36360244
  113. Kaboli S, Babazada H. CRISPR mediated genome engineering and its application in industry. Curr Issues Mol Biol 2018; 26(1): 81-92. doi: 10.21775/cimb.026.081 PMID: 28879858
  114. Cai L, Fisher AL, Huang H, Xie Z. CRISPR-mediated genome editing and human diseases. Genes Dis 2016; 3(4): 244-51. doi: 10.1016/j.gendis.2016.07.003 PMID: 30258895
  115. Simonato M, Bennett J, Boulis NM, et al. Progress in gene therapy for neurological disorders. Nat Rev Neurol 2013; 9(5): 277-91. doi: 10.1038/nrneurol.2013.56 PMID: 23609618
  116. Deverman BE, Ravina BM, Bankiewicz KS, Paul SM, Sah DWY. Gene therapy for neurological disorders: Progress and prospects. Nat Rev Drug Discov 2018; 17(9): 641-59. doi: 10.1038/nrd.2018.110 PMID: 30093643
  117. Morris G, Schorge S. Gene therapy for neurological disease: State of the art and opportunities for next-generation approaches. Neuroscience 2022; 490: 309-14. doi: 10.1016/j.neuroscience.2022.03.010 PMID: 35304290
  118. Lubroth P, Colasante G, Lignani G. In vivo genome editing therapeutic approaches for neurological disorders: Where are we in the translational pipeline? Front Neurosci 2021; 15: 632522. doi: 10.3389/fnins.2021.632522 PMID: 33679313
  119. Colby B. Outsmart your genes: How understanding your DNA will empower you to protect yourself against cancer, Alzheimer's, heart disease, obesity, and many other conditions. Penguin 2010
  120. Daniel T. Re-emphasizing African bioethics in light of potential CRISPR-based treatment for HIV and sickle cell disease. Vand J Transnat’l L 2021; 54: 459.
  121. Shinwari ZK, Tanveer F, Khalil AT. Ethical issues regarding CRISPR mediated genome editing. Curr Issues Mol Biol 2018; 26(1): 103-10. doi: 10.21775/cimb.026.103 PMID: 28879860
  122. Brokowski C, Adli M. CRISPR ethics: Moral considerations for applications of a powerful tool. J Mol Biol 2019; 431(1): 88-101. doi: 10.1016/j.jmb.2018.05.044 PMID: 29885329
  123. McCarthy MW. Harnessing the potential of CRISPR-based platforms to advance the field of hospital medicine. Expert Rev Anti Infect Ther 2020; 18(8): 799-805. doi: 10.1080/14787210.2020.1761333 PMID: 32366131
  124. Kannan S, Najjar D. Therapeutic gene editing is here, can regulations keep up? MIT Sci Policy Rev 2020; 1: 64.
  125. Howard HC, van El CG, Forzano F, et al. One small edit for humans, one giant edit for humankind? Points and questions to consider for a responsible way forward for gene editing in humans. Eur J Hum Genet 2018; 26(1): 1-11. doi: 10.1038/s41431-017-0024-z PMID: 29192152
  126. Ahmad HI, Ahmad MJ, Asif AR, et al. A review of CRISPR-based genome editing: Survival, evolution and challenges. Curr Issues Mol Biol 2018; 28(1): 47-68. doi: 10.21775/cimb.028.047 PMID: 29428910
  127. Fraenkel L, Bathon JM, England BR, et al. 2021 American College of rheumatology guideline for the treatment of rheumatoid arthritis. Arthritis Rheumatol 2021; 73(7): 1108-23. doi: 10.1002/art.41752 PMID: 34101376
  128. Vignali V, Hines PA, Cruz AG, Ziętek B, Herold R. Health horizons: Future trends and technologies from the European Medicines Agency’s horizon scanning collaborations. Front Med 2022; 9: 1064003. doi: 10.3389/fmed.2022.1064003 PMID: 36569125
  129. Schultz-Bergin M. Is CRISPR an ethical game changer? J Agric Environ Ethics 2018; 31(2): 219-38. doi: 10.1007/s10806-018-9721-z
  130. Haddock R, Lin-Gibson S, Lumelsky N, et al. Manufacturing Cell Therapies: The Paradigm Shift in Health Care of This Century. Washington, DC: National Academy of Medicine 2017. doi: 10.31478/201706c
  131. Hamner E. Editing the Soul: Science and Fiction in the Genome Age. Penn State Press 2017.
  132. Zhu S, Li W, Liu J, et al. Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR–Cas9 library. Nat Biotechnol 2016; 34(12): 1279-86.https://www.nature.com/articles/nbt.3715 doi: 10.1038/nbt.3715 PMID: 27798563
  133. Ball C. Converge: A futurist's insights into the potential of our world as technology and humanity collide. Major Street Publishing 2022.
  134. Ramirez JC. Gene editing and CRISPR therapeutics: Strategies taught by cell and gene therapy. Prog Mol Biol Transl Sci 2017; 152: 115-30. doi: 10.1016/bs.pmbts.2017.08.003 PMID: 29150002
  135. Anliker B, Childs L, Rau J, et al. Regulatory considerations for clinical trial applications with CRISPR-based medicinal products. CRISPR J 2022; 5(3): 364-76. doi: 10.1089/crispr.2021.0148 PMID: 35452274
  136. McTague A, Rossignoli G, Ferrini A, Barral S, Kurian MA. Genome editing in iPSC-based neural systems: From disease models to future therapeutic strategies. Front Genome Edit 2021; 3: 630600. doi: 10.3389/fgeed.2021.630600 PMID: 34713254
  137. Sakamoto JH, van de Ven AL, Godin B, et al. Enabling individualized therapy through nanotechnology. Pharmacol Res 2010; 62(2): 57-89. doi: 10.1016/j.phrs.2009.12.011 PMID: 20045055
  138. DeWitt MA, Magis W, Bray NL, et al. Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells. Sci Transl Med 2016; 8(360): 360ra134.
  139. Stadtmauer EA, Fraietta JA, Davis MM, et al. CRISPR-engineered T cells in patients with refractory cancer. Science 2020; 367(6481): eaba7365. doi: 10.1126/science.aba7365 PMID: 32029687
  140. Huang K, Zapata D, Tang Y, Teng Y, Li Y. In vivo delivery of CRISPR-Cas9 genome editing components for therapeutic applications. Biomaterials 2022; 291: 121876. doi: 10.1016/j.biomaterials.2022.121876 PMID: 36334354
  141. Usmani SM, Murooka TT, Deruaz M, et al. HIV-1 balances the fitness costs and benefits of disrupting the host cell actin cytoskeleton early after mucosal transmission. Cell Host Microbe 2019; 25(1): 73-86.e5. doi: 10.1016/j.chom.2018.12.008 PMID: 30629922
  142. Hanson B, Stenler S, Ahlskog N, et al. Non-uniform dystrophin re-expression after CRISPR-mediated exon excision in the dystrophin/utrophin double-knockout mouse model of DMD. Mol Ther Nucleic Acids 2022; 30: 379-97. doi: 10.1016/j.omtn.2022.10.010 PMID: 36420212
  143. Brundin P, Dave KD, Kordower JH. Therapeutic approaches to target alpha-synuclein pathology. Exp Neurol 2017; 298(Pt B): 225-35. doi: 10.1016/j.expneurol.2017.10.003 PMID: 28987463
  144. Haltalli MLR, Wilkinson AC, Rodriguez-Fraticelli A, Porteus M. Hematopoietic stem cell gene editing and expansion: State-of-the-art technologies and recent applications. Exp Hematol 2022; 107: 9-13. doi: 10.1016/j.exphem.2021.12.399 PMID: 34973360
  145. Smith AJ, Carter SP, Kennedy BN. Genome editing: The breakthrough technology for inherited retinal disease? Expert Opin Biol Ther 2017; 17(10): 1245-54. doi: 10.1080/14712598.2017.1347629 PMID: 28695744
  146. Kizilel S, Scavone A, Liu X, et al. Encapsulation of pancreatic islets within nano-thin functional polyethylene glycol coatings for enhanced insulin secretion. Tissue Eng Part A 2010; 16(7): 2217-28. doi: 10.1089/ten.tea.2009.0640 PMID: 20163204
  147. Xu L, Park KH, Zhao L, et al. CRISPR-mediated genome editing restores dystrophin expression and function in mdx mice. Mol Ther 2016; 24(3): 564-9. doi: 10.1038/mt.2015.192 PMID: 26449883
  148. Ebina H, Misawa N, Kanemura Y, Koyanagi Y. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep 2013; 3(1): 2510. doi: 10.1038/srep02510 PMID: 23974631
  149. Dimitri A, Herbst F, Fraietta JA. Engineering the next-generation of CAR T-cells with CRISPR-Cas9 gene editing. Mol Cancer 2022; 21(1): 78. doi: 10.1186/s12943-022-01559-z PMID: 35303871
  150. Newby GA, Liu DR. In vivo somatic cell base editing and prime editing. Mol Ther 2021; 29(11): 3107-24. doi: 10.1016/j.ymthe.2021.09.002 PMID: 34509669
  151. Carroll JB, Warby SC, Southwell AL, et al. Potent and selective antisense oligonucleotides targeting single-nucleotide polymorphisms in the Huntington disease gene / allele-specific silencing of mutant huntingtin. Mol Ther 2011; 19(12): 2178-85. doi: 10.1038/mt.2011.201 PMID: 21971427
  152. Furrow BR. The CRISPR-Cas9 tool of gene editing: Cheaper, faster, riskier. Ann Health Law 2017; 26: 33.
  153. Hough SH, Ajetunmobi A. The future of CRISPR applications in the lab, the clinic and society. Adv Exp Med Biol 2017; 1016: 157-78. doi: 10.1007/978-3-319-63904-8_9
  154. Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol 2018; 15(2): 81-94. doi: 10.1038/nrclinonc.2017.166 PMID: 29115304
  155. Horvath P, Aulner N, Bickle M, et al. Screening out irrelevant cell-based models of disease. Nat Rev Drug Discov 2016; 15(11): 751-69. doi: 10.1038/nrd.2016.175 PMID: 27616293
  156. Grunewald S. CRISPR's creatures: Protecting wildlife in the age of genomic editing. UCLA J Envtl L & Pol'y 2019; 37: 1.
  157. Coleman F. A human algorithm: How Artificial Intelligence is redefining who we are Melville House UK. 2020.
  158. Bhat AA, Nisar S, Mukherjee S, et al. Integration of CRISPR/Cas9 with artificial intelligence for improved cancer therapeutics. J Transl Med 2022; 20(1): 534. doi: 10.1186/s12967-022-03765-1 PMID: 36401282
  159. Xu Y, Li Z. CRISPR-Cas systems: Overview, innovations and applications in human disease research and gene therapy. Comput Struct Biotechnol J 2020; 18: 2401-15. doi: 10.1016/j.csbj.2020.08.031 PMID: 33005303
  160. Roueinfar M, Templeton HN, Sheng JA, Hong KL. An update of nucleic acids aptamers theranostic integration with CRISPR/Cas technology. Molecules 2022; 27(3): 1114. doi: 10.3390/molecules27031114 PMID: 35164379
  161. Leal AF, Fnu N, Benincore-Flórez E, et al. The landscape of CRISPR/Cas9 for inborn errors of metabolism. Mol Genet Metab 2022; 138(1): 106968. PMID: 36525790
  162. Iriart JAB. Precision medicine/personalized medicine: A critical analysis of movements in the transformation of biomedicine in the early 21st century. Cad Saude Publica 2019; 35(3): e00153118. doi: 10.1590/0102-311x00153118 PMID: 30916181
  163. Hernandez-Benitez R, Martinez-Martinez ML, Lajara J, Magistretti P, Montserrat N, Belmonte JC. At the heart of genome editing and cardiovascular diseases. Circ Res 2018; 123(2): 221-3. doi: 10.1161/CIRCRESAHA.118.312676 PMID: 29976689
  164. Kungulovski G, Jeltsch A. Epigenome editing: State of the art, concepts, and perspectives. Trends Genet 2016; 32(2): 101-13. doi: 10.1016/j.tig.2015.12.001 PMID: 26732754
  165. Champer J, Champer SE, Kim IK, Clark AG, Messer PW. Design and analysis of CRISPR-based underdominance toxin-antidote gene drives. Evol Appl 2021; 14(4): 1052-69. doi: 10.1111/eva.13180 PMID: 33897820
  166. Nethery MA, Hidalgo-Cantabrana C, Roberts A, Barrangou R. CRISPR-based engineering of phages for in situ bacterial base editing. Proc Natl Acad Sci 2022; 119(46): e2206744119. doi: 10.1073/pnas.2206744119 PMID: 36343261
  167. Jaudon F, Thalhammer A, Zentilin L, Cingolani LA. CRISPR-mediated activation of autism gene Itgb3 restores cortical network excitability via mGluR5 signaling. Mol Ther Nucleic Acids 2022; 29: 462-80. doi: 10.1016/j.omtn.2022.07.013 PMID: 36035754
  168. Liang Y, Xu X, Xu L, et al. Chondrocyte-specific genomic editing enabled by hybrid exosomes for osteoarthritis treatment. Theranostics 2022; 12(11): 4866-78. doi: 10.7150/thno.69368 PMID: 35836795
  169. Barman NC, Khan NM, Islam M, et al. CRISPR-Cas9: A promising genome editing therapeutic tool for Alzheimer’s disease—A narrative review. Neurol Ther 2020; 9(2): 419-34. doi: 10.1007/s40120-020-00218-z PMID: 33089409
  170. Abati E, Sclarandi E, Comi GP, Parente V, Corti S. Perspectives on hiPSC-derived muscle cells as drug discovery models for muscular dystrophies. Int J Mol Sci 2021; 22(17): 9630. doi: 10.3390/ijms22179630 PMID: 34502539
  171. Xiao Q, Guo D, Chen S. Application of CRISPR/Cas9-based gene editing in HIV-1/AIDS therapy. Front Cell Infect Microbiol 2019; 9: 69. doi: 10.3389/fcimb.2019.00069 PMID: 30968001
  172. Xu J, Huang G, Guo T. Developmental bisphenol A exposure modulates immune-related diseases. Toxics 2016; 4(4): 23. doi: 10.3390/toxics4040023 PMID: 29051427
  173. Kim K, Park SW, Kim JH, et al. Genome surgery using Cas9 ribonucleoproteins for the treatment of age-related macular degeneration. Genome Res 2017; 27(3): 419-26. doi: 10.1101/gr.219089.116 PMID: 28209587
  174. Zhou ZP, Yang LL, Cao H, et al. In vitro validation of a CRISPR- mediated CFTR correction strategy for preclinical translation in pigs. Hum Gene Ther 2019; 30(9): 1101-16. doi: 10.1089/hum.2019.074 PMID: 31099266
  175. Zeng CW, Zhang CL. Neuronal regeneration after injury: A new perspective on gene therapy. Front Neurosci 2023; 17: 1181816. doi: 10.3389/fnins.2023.1181816 PMID: 37152598
  176. de Groote ML, Verschure PJ, Rots MG. Epigenetic Editing: Targeted rewriting of epigenetic marks to modulate expression of selected target genes. Nucleic Acids Res 2012; 40(21): 10596-613. doi: 10.1093/nar/gks863 PMID: 23002135
  177. Cai A, Kong X. Development of CRISPR-mediated systems in the study of Duchenne muscular dystrophy. Hum Gene Ther Methods 2019; 30(3): 71-80. doi: 10.1089/hgtb.2018.187 PMID: 31062609

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers