ARL15 and its Multiple Disease Association: Emerging Functions and Potential Therapeutic Application


Cite item

Full Text

Abstract

ARL15 is a member of the RAS superfamily of small GTPases and is associated with several metabolic traits, including increased risk of diabetes, rheumatoid arthritis and lipid metabolism disorders. The ARL15 gene encodes for an uncharacterized small GTP binding protein. Its precise role in human physiology remains unknown, but several genetic association studies have recognized different variants in this gene to be statistically associated with numerous traits and complex diseases. Here, we provided the unique features of ARL15 small G protein, its association with varied metabolic and lifestyle diseases, its function in vesicular and lipid trafficking, and its binding partners. We outlined this protein as a promising and emerging therapeutic target to combat metabolic disorders like cardiovascular diseases, diabetes and rheumatoid arthritis. The review provides a comprehensive description of the current advancements in ARL15 research with a perspective that focused research will position this small GTPase as a viable target for the treatment of rheumatoid arthritis.

About the authors

Manisha Saini

Department of Biochemistry, University of Delhi South Campus

Email: info@benthamscience.net

Varnita Anand

Department of Biochemistry, University of Delhi South Campus

Email: info@benthamscience.net

Aditya Sharma

Department of Genetics,, University of Delhi South Campus

Email: info@benthamscience.net

Anuj Pandey

Department of Genetics, University of Delhi South Campus

Email: info@benthamscience.net

Bittianda Thelma

Department of Genetics, University of Delhi South Campus

Email: info@benthamscience.net

Suman Kundu

Department of Biochemistry, University of Delhi South Campus

Author for correspondence.
Email: info@benthamscience.net

References

  1. Colicelli, J. Human RAS superfamily proteins and related GTPases. Sci. STKE, 2004, 2004(250), RE13. doi: 10.1126/stke.2502004re13 PMID: 15367757
  2. Wennerberg, K.; Rossman, K.L.; Der, C.J. The Ras superfamily at a glance. J. Cell Sci., 2005, 118(5), 843-846. doi: 10.1242/jcs.01660 PMID: 15731001
  3. Bokoch, G.M.; Der, C.J. Emerging concepts in the Ras superfamily of GTP‐binding proteins. FASEB J., 1993, 7(9), 750-759. doi: 10.1096/fasebj.7.9.8330683 PMID: 8330683
  4. Tetlow, A.L.; Tamanoi, F. The ras superfamily G-proteins. Enzymes, 2013, 33(Pt A), 1-14. doi: 10.1016/B978-0-12-416749-0.00001-4 PMID: 25033798
  5. Heasman, S.J.; Ridley, A.J. Mammalian Rho GTPases: New insights into their functions from in vivo studies. Nat. Rev. Mol. Cell Biol., 2008, 9(9), 690-701. doi: 10.1038/nrm2476 PMID: 18719708
  6. Chavrier, P.; Goud, B. The role of ARF and Rab GTPases in membrane transport. Curr. Opin. Cell Biol., 1999, 11(4), 466-475. doi: 10.1016/S0955-0674(99)80067-2 PMID: 10449335
  7. Casanova, J.E. ARFs. Curr. Biol., 2003, 13(4), R123. doi: 10.1016/S0960-9822(03)00069-1 PMID: 12593809
  8. Matozaki, T.; Nakanishi, H.; Takai, Y. Small G-protein networks. Cell. Signal., 2000, 12(8), 515-524. doi: 10.1016/S0898-6568(00)00102-9 PMID: 11027944
  9. Klöpper, T.H.; Kienle, N.; Fasshauer, D.; Munro, S. Untangling the evolution of Rab G proteins: Implications of a comprehensive genomic analysis. BMC Biol., 2012, 10(1), 71. doi: 10.1186/1741-7007-10-71 PMID: 22873208
  10. Randazzo, P.A.; Nie, Z.; Miura, K.; Hsu, V.W. Molecular aspects of the cellular activities of ADP-ribosylation factors. Sci. STKE, 2000, 2000(59), re1. doi: 10.1126/stke.2000.59.re1 PMID: 11752622
  11. Donaldson, J.G.; Jackson, C.L. Regulators and effectors of the ARF GTPases. Curr. Opin. Cell Biol., 2000, 12(4), 475-482. doi: 10.1016/S0955-0674(00)00119-8 PMID: 10873831
  12. Adarska, P.; Wong-Dilworth, L.; Bottanelli, F. ARF GTPases and their ubiquitous role in intracellular trafficking beyond the golgi. Front. Cell Dev. Biol., 2021, 9(7), 679046. doi: 10.3389/fcell.2021.679046 PMID: 34368129
  13. Kalab, P.; Weis, K.; Heald, R. Visualization of a Ran-GTP gradient in interphase and mitotic Xenopus egg extracts. Science, 2002, 295(5564), 2452-2456. doi: 10.1126/science.1068798 PMID: 11923538
  14. Moore, M.S.; Blobel, G. The two steps of nuclear import, targeting to the nuclear envelope and translocation through the nuclear pore, require different cytosolic factors. Cell, 1992, 69(6), 939-950. doi: 10.1016/0092-8674(92)90613-H PMID: 1606616
  15. Kjeldgaard, M.; Nyborg, J.; Clark, B.F.C. The GTP binding motif: Variations on a theme. FASEB J., 1996, 10(12), 1347-1368. doi: 10.1096/fasebj.10.12.8903506 PMID: 8903506
  16. Zhang, B.; Zhang, Y.; Wang, Z.; Zheng, Y. The role of Mg2+ cofactor in the guanine nucleotide exchange and GTP hydrolysis reactions of Rho family GTP-binding proteins. J. Biol. Chem., 2000, 275(33), 25299-25307. doi: 10.1074/jbc.M001027200 PMID: 10843989
  17. Brunsveld, L.; Kuhlmann, J.; Alexandrov, K.; Wittinghofer, A.; Goody, R.S.; Waldmann, H. Lipidated ras and rab peptides and proteins-synthesis, structure, and function. Angew. Chem. Int. Ed., 2006, 45(40), 6622-6646. doi: 10.1002/anie.200600855 PMID: 17031879
  18. Peurois, F.; Veyron, S.; Ferrandez, Y.; Ladid, I.; Benabdi, S.; Zeghouf, M.; Peyroche, G.; Cherfils, J. Characterization of the activation of small GTPases by their GEFs on membranes using artificial membrane tethering. Biochem. J., 2017, 474(7), 1259-1272. doi: 10.1042/BCJ20170015 PMID: 28196833
  19. Klooster, J.P.; Hordijk, P.L. Targeting and localized signalling by small GTPases. Biol. Cell, 2007, 99(1), 1-12. doi: 10.1042/BC20060071 PMID: 17155934
  20. Kahn, R.A.; Cherfils, J.; Elias, M.; Lovering, R.C.; Munro, S.; Schurmann, A. Nomenclature for the human Arf family of GTP-binding proteins: ARF, ARL, and SAR proteins. J. Cell Biol., 2006, 172(5), 645-650. doi: 10.1083/jcb.200512057 PMID: 16505163
  21. Donaldson, J.G.; Jackson, C.L. ARF family G proteins and their regulators: Roles in membrane transport, development and disease. Nat. Rev. Mol. Cell Biol., 2011, 12(6), 362-375. doi: 10.1038/nrm3117 PMID: 21587297
  22. Memon, A.R. The role of ADP-ribosylation factor and SAR1 in vesicular trafficking in plants. Biochim. Biophys. Acta Biomembr., 2004, 1664(1), 9-30. doi: 10.1016/j.bbamem.2004.04.005 PMID: 15238254
  23. Wu, M.; Lu, L.; Hong, W.; Song, H. Structural basis for recruitment of GRIP domain golgin-245 by small GTPase Arl1. Nat. Struct. Mol. Biol., 2004, 11(1), 86-94. doi: 10.1038/nsmb714 PMID: 14718928
  24. Bartolini, F.; Bhamidipati, A.; Thomas, S.; Schwahn, U.; Lewis, S.A.; Cowan, N.J. Functional overlap between retinitis pigmentosa 2 protein and the tubulin-specific chaperone cofactor C. J. Biol. Chem., 2002, 277(17), 14629-14634. doi: 10.1074/jbc.M200128200 PMID: 11847227
  25. Bhamidipati, A.; Lewis, S.A.; Cowan, N.J. ADP ribosylation factor-like protein 2 (Arl2) regulates the interaction of tubulin-folding cofactor D with native tubulin. J. Cell Biol., 2000, 149(5), 1087-1096. doi: 10.1083/jcb.149.5.1087 PMID: 10831612
  26. Bowzard, J.B.; Cheng, D.; Peng, J.; Kahn, R.A. ELMOD2 is an Arl2 GTPase-activating protein that also acts on Arfs. J. Biol. Chem., 2007, 282(24), 17568-17580. doi: 10.1074/jbc.M701347200 PMID: 17452337
  27. Cai, X.B.; Wu, K.C.; Zhang, X.; Lv, J.N.; Jin, G.H.; Xiang, L.; Chen, J.; Huang, X.F.; Pan, D.; Lu, B.; Lu, F.; Qu, J.; Jin, Z.B. Whole‐exome sequencing identified ARL2 as a novel candidate gene for MRCS (microcornea, rod‐cone dystrophy, cataract, and posterior staphyloma) syndrome. Clin. Genet., 2019, 96(1), 61-71. doi: 10.1111/cge.13541 PMID: 30945270
  28. Muromoto, R.; Sekine, Y.; Imoto, S.; Ikeda, O.; Okayama, T.; Sato, N.; Matsuda, T. BART is essential for nuclear retention of STAT3. Int. Immunol., 2008, 20(3), 395-403. doi: 10.1093/intimm/dxm154 PMID: 18234692
  29. Sharer, J.D.; Kahn, R.A. The ARF-like 2 (ARL2)-binding protein, BART. J. Biol. Chem., 1999, 274(39), 27553-27561. doi: 10.1074/jbc.274.39.27553 PMID: 10488091
  30. Tian, G.; Thomas, S.; Cowan, N.J. Effect of TBCD and its regulatory interactor Arl2 on tubulin and microtubule integrity. Cytoskeleton, 2010, 67(11), 706-714. doi: 10.1002/cm.20480 PMID: 20740604
  31. Van Valkenburgh, H.; Shern, J.F.; Sharer, J.D.; Zhu, X.; Kahn, R.A. ADP-ribosylation factors (ARFs) and ARF-like 1 (ARL1) have both specific and shared effectors: Characterizing ARL1-binding proteins. J. Biol. Chem., 2001, 276(25), 22826-22837. doi: 10.1074/jbc.M102359200 PMID: 11303027
  32. Veltel, S.; Kravchenko, A.; Ismail, S.; Wittinghofer, A. Specificity of Arl2/Arl3 signaling is mediated by a ternary Arl3-effector-GAP complex. FEBS Lett., 2008, 582(17), 2501-2507. doi: 10.1016/j.febslet.2008.05.053 PMID: 18588884
  33. Zhou, C.; Cunningham, L.; Marcus, A.I.; Li, Y.; Kahn, R.A. Arl2 and Arl3 regulate different microtubule-dependent processes. Mol. Biol. Cell, 2006, 17(5), 2476-2487. doi: 10.1091/mbc.e05-10-0929 PMID: 16525022
  34. Kühnel, K.; Veltel, S.; Schlichting, I.; Wittinghofer, A. Crystal structure of the human retinitis pigmentosa 2 protein and its interaction with Arl3. Structure, 2006, 14(2), 367-378. doi: 10.1016/j.str.2005.11.008 PMID: 16472755
  35. Wright, K.J.; Baye, L.M.; Olivier-Mason, A.; Mukhopadhyay, S.; Sang, L.; Kwong, M.; Wang, W.; Pretorius, P.R.; Sheffield, V.C.; Sengupta, P.; Slusarski, D.C.; Jackson, P.K. An ARL3-UNC119-RP2 GTPase cycle targets myristoylated NPHP3 to the primary cilium. Genes Dev., 2011, 25(22), 2347-2360. doi: 10.1101/gad.173443.111 PMID: 22085962
  36. Hofmann, I.; Thompson, A.; Sanderson, C.M.; Munro, S. The Arl4 family of small G proteins can recruit the cytohesin Arf6 exchange factors to the plasma membrane. Curr. Biol., 2007, 17(8), 711-716. doi: 10.1016/j.cub.2007.03.007 PMID: 17398095
  37. Lin, C.Y.; Huang, P.H.; Liao, W.L.; Cheng, H.J.; Huang, C.F.; Kuo, J.C.; Patton, W.A.; Massenburg, D.; Moss, J.; Lee, F.J.S. ARL4, an ARF-like protein that is developmentally regulated and localized to nuclei and nucleoli. J. Biol. Chem., 2000, 275(48), 37815-37823. doi: 10.1074/jbc.M002470200 PMID: 10980193
  38. Engel, T.; Lueken, A.; Bode, G.; Hobohm, U.; Lorkowski, S.; Schlueter, B.; Rust, S.; Cullen, P.; Pech, M.; Assmann, G.; Seedorf, U. ADP-ribosylation factor (ARF)-like 7 (ARL7) is induced by cholesterol loading and participates in apolipoprotein AI-dependent cholesterol export. FEBS Lett., 2004, 566(1-3), 241-246. doi: 10.1016/j.febslet.2004.04.048 PMID: 15147902
  39. Wei, S.; Xie, C.; Abe, Y.; Cai, J. ADP-ribosylation factor like 7 (ARL7) interacts with α-tubulin and modulates intracellular vesicular transport. Biochem. Biophys. Res. Commun., 2009, 384(3), 352-356. doi: 10.1016/j.bbrc.2009.04.125 PMID: 19409876
  40. Ishida, M.; Bonifacino, J.S. ARFRP1 functions upstream of ARL1 and ARL5 to coordinate recruitment of distinct tethering factors to the trans-golgi network. J. Cell Biol., 2019, 218(11), 3880. doi: 10.1083/jcb.20190509710072019c PMID: 31604800
  41. Lin, C.Y.; Li, C.C.; Huang, P.H.; Lee, F.J.S. A developmentally regulated ARF-like 5 protein (ARL5), localized to nuclei and nucleoli, interacts with heterochromatin protein 1. J. Cell Sci., 2002, 115(23), 4433-4445. doi: 10.1242/jcs.00123 PMID: 12414990
  42. Shi, M.; Chen, B.; Mahajan, D.; Boh, B.K.; Zhou, Y.; Dutta, B.; Tie, H.C.; Sze, S.K.; Wu, G.; Lu, L. Amino acids stimulate the endosome-to-Golgi trafficking through Ragulator and small GTPase Arl5. Nat. Commun., 2018, 9(1), 4987. doi: 10.1038/s41467-018-07444-y PMID: 30478271
  43. Houghton, F.J.; Bellingham, S.A.; Hill, A.F.; Bourges, D.; Ang, D.K.Y.; Gemetzis, T.; Gasnereau, I.; Gleeson, P.A. Arl5b is a Golgi-localised small G protein involved in the regulation of retrograde transport. Exp. Cell Res., 2012, 318(5), 464-477. doi: 10.1016/j.yexcr.2011.12.023 PMID: 22245584
  44. Jaimon, E.; Tripathi, A.; Khurana, A.; Ghosh, D.; Sugatha, J.; Datta, S. Binding with heat shock cognate protein HSC70 fine-tunes the Golgi association of the small GTPase ARL5B. J. Biol. Chem., 2021, 297(6), 101422. doi: 10.1016/j.jbc.2021.101422 PMID: 34798070
  45. Rosa-Ferreira, C.; Christis, C.; Torres, I.L.; Munro, S. The small G protein Arl5 contributes to endosome-to-Golgi traffic by aiding the recruitment of the GARP complex to the Golgi. Biol. Open, 2015, 4(4), 474-481. doi: 10.1242/bio.201410975 PMID: 25795912
  46. Toh, W.H.; Tan, J.Z.A.; Zulkefli, K.L.; Houghton, F.J.; Gleeson, P.A. Amyloid precursor protein traffics from the Golgi directly to early endosomes in an Arl5b- and AP4-dependent pathway. Traffic, 2017, 18(3), 159-175. doi: 10.1111/tra.12465 PMID: 28000370
  47. Jin, H.; White, S.R.; Shida, T.; Schulz, S.; Aguiar, M.; Gygi, S.P.; Bazan, J.F.; Nachury, M.V. The conserved Bardet-Biedl syndrome proteins assemble a coat that traffics membrane proteins to cilia. Cell, 2010, 141(7), 1208-1219. doi: 10.1016/j.cell.2010.05.015 PMID: 20603001
  48. Liew, G.M.; Ye, F.; Nager, A.R.; Murphy, J.P.; Lee, J.S.; Aguiar, M.; Breslow, D.K.; Gygi, S.P.; Nachury, M.V. The intraflagellar transport protein IFT27 promotes BBSome exit from cilia through the GTPase ARL6/BBS3. Dev. Cell, 2014, 31(3), 265-278. doi: 10.1016/j.devcel.2014.09.004 PMID: 25443296
  49. Seo, S.; Zhang, Q.; Bugge, K.; Breslow, D.K.; Searby, C.C.; Nachury, M.V.; Sheffield, V.C. A novel protein LZTFL1 regulates ciliary trafficking of the BBSome and Smoothened. PLoS Genet., 2011, 7(11), e1002358. doi: 10.1371/journal.pgen.1002358 PMID: 22072986
  50. Wiens, C.J.; Tong, Y.; Esmail, M.A.; Oh, E.; Gerdes, J.M.; Wang, J.; Tempel, W.; Rattner, J.B.; Katsanis, N.; Park, H.W.; Leroux, M.R. Bardet-Biedl syndrome-associated small GTPase ARL6 (BBS3) functions at or near the ciliary gate and modulates Wnt signaling. J. Biol. Chem., 2010, 285(21), 16218-16230. doi: 10.1074/jbc.M109.070953 PMID: 20207729
  51. Bagshaw, R.D.; Callahan, J.W.; Mahuran, D.J. The Arf-family protein, Arl8b, is involved in the spatial distribution of lysosomes. Biochem. Biophys. Res. Commun., 2006, 344(4), 1186-1191. doi: 10.1016/j.bbrc.2006.03.221 PMID: 16650381
  52. Marwaha, R.; Arya, S.B.; Jagga, D.; Kaur, H.; Tuli, A.; Sharma, M. The Rab7 effector PLEKHM1 binds Arl8b to promote cargo traffic to lysosomes. J. Cell Biol., 2017, 216(4), 1051-1070. doi: 10.1083/jcb.201607085 PMID: 28325809
  53. Okai, T.; Araki, Y.; Tada, M.; Tateno, T.; Kontani, K.; Katada, T. Novel small GTPase subfamily capable of associating with tubulin is required for chromosome segregation. J. Cell Sci., 2004, 117(20), 4705-4715. doi: 10.1242/jcs.01347 PMID: 15331635
  54. Rosa-Ferreira, C.; Munro, S. Arl8 and SKIP act together to link lysosomes to kinesin-1. Dev. Cell, 2011, 21(6), 1171-1178. doi: 10.1016/j.devcel.2011.10.007 PMID: 22172677
  55. Garg, S.; Sharma, M.; Ung, C.; Tuli, A.; Barral, D.C.; Hava, D.L.; Veerapen, N.; Besra, G.S.; Hacohen, N.; Brenner, M.B. Lysosomal trafficking, antigen presentation, and microbial killing are controlled by the Arf-like GTPase Arl8b. Immunity, 2011, 35(2), 182-193. doi: 10.1016/j.immuni.2011.06.009 PMID: 21802320
  56. Hofmann, I.; Munro, S. An N-terminally acetylated Arf-like GTPase is localised to lysosomes and affects their motility. J. Cell Sci., 2006, 119(8), 1494-1503. doi: 10.1242/jcs.02958 PMID: 16537643
  57. Khatter, D.; Raina, V.B.; Dwivedi, D.; Sindhwani, A.; Bahl, S.; Sharma, M. The small GTPase Arl8b regulates assembly of the mammalian HOPS complex to lysosomes. J. Cell Sci., 2015, 128(9), jcs.162651. doi: 10.1242/jcs.162651 PMID: 25908847
  58. Michelet, X.; Tuli, A.; Gan, H.; Geadas, C.; Sharma, M.; Remold, H.G.; Brenner, M.B. Lysosome-mediated plasma membrane repair is dependent on the small GTPase Arl8b and determines cell death type in mycobacterium tuberculosis infection. J. Immunol., 2018, 200(9), 3160-3169. doi: 10.4049/jimmunol.1700829 PMID: 29592961
  59. Tuli, A.; Thiery, J.; James, A.M.; Michelet, X.; Sharma, M.; Garg, S.; Sanborn, K.B.; Orange, J.S.; Lieberman, J.; Brenner, M.B. Arf-like GTPase Arl8b regulates lytic granule polarization and natural killer cell-mediated cytotoxicity. Mol. Biol. Cell, 2013, 24(23), 3721-3735. doi: 10.1091/mbc.e13-05-0259 PMID: 24088571
  60. Arya, S.B.; Kumar, G.; Kaur, H.; Kaur, A.; Tuli, A. ARL11 regulates lipopolysaccharide-stimulated macrophage activation by promoting mitogen-activated protein kinase (MAPK) signaling. J. Biol. Chem., 2018, 293(25), 9892-9909. doi: 10.1074/jbc.RA117.000727 PMID: 29618517
  61. Calin, G.A.; Trapasso, F.; Shimizu, M.; Dumitru, C.D.; Yendamuri, S.; Godwin, A.K.; Ferracin, M.; Bernardi, G.; Chatterjee, D.; Baldassarre, G.; Rattan, S.; Alder, H.; Mabuchi, H.; Shiraishi, T.; Hansen, L.L.; Overgaard, J.; Herlea, V.; Mauro, F.R.; Dighiero, G.; Movsas, B.; Rassenti, L.; Kipps, T.; Baffa, R.; Fusco, A.; Mori, M.; Russo, G.; Liu, C.G.; Neuberg, D.; Bullrich, F.; Negrini, M.; Croce, C.M. Familial cancer associated with a polymorphism in ARLTS1. N. Engl. J. Med., 2005, 352(16), 1667-1676. doi: 10.1056/NEJMoa042280 PMID: 15843669
  62. Barral, D.C.; Garg, S.; Casalou, C.; Watts, G.F.M.; Sandoval, J.L.; Ramalho, J.S.; Hsu, V.W.; Brenner, M.B. Arl13b regulates endocytic recycling traffic. Proc. Natl. Acad. Sci., 2012, 109(52), 21354-21359. doi: 10.1073/pnas.1218272110 PMID: 23223633
  63. Casalou, C.; Seixas, C.; Portelinha, A.; Pintado, P.; Barros, M.; Ramalho, J.S.; Lopes, S.S.; Barral, D.C. Arl13b and the nonmuscle myosin heavy chain IIA are required for circular dorsal ruffle formation and cell migration. J. Cell Sci., 2014, 127(Pt 12), jcs.143446. doi: 10.1242/jcs.143446 PMID: 24777479
  64. Caspary, T.; Larkins, C.E.; Anderson, K.V. The graded response to Sonic Hedgehog depends on cilia architecture. Dev. Cell, 2007, 12(5), 767-778. doi: 10.1016/j.devcel.2007.03.004 PMID: 17488627
  65. Cevik, S.; Sanders, A.A.W.M.; Van Wijk, E.; Boldt, K.; Clarke, L.; van Reeuwijk, J.; Hori, Y.; Horn, N.; Hetterschijt, L.; Wdowicz, A.; Mullins, A.; Kida, K.; Kaplan, O.I.; van Beersum, S.E.C.; Man Wu, K.; Letteboer, S.J.F.; Mans, D.A.; Katada, T.; Kontani, K.; Ueffing, M.; Roepman, R.; Kremer, H.; Blacque, O.E. Active transport and diffusion barriers restrict Joubert Syndrome-associated ARL13B/ARL-13 to an Inv-like ciliary membrane subdomain. PLoS Genet., 2013, 9(12), e1003977. doi: 10.1371/journal.pgen.1003977 PMID: 24339792
  66. Duldulao, N.A.; Lee, S.; Sun, Z. Cilia localization is essential for in vivo functions of the Joubert syndrome protein Arl13b/Scorpion. Development, 2009, 136(23), 4033-4042. doi: 10.1242/dev.036350 PMID: 19906870
  67. Hori, Y.; Kobayashi, T.; Kikko, Y.; Kontani, K.; Katada, T. Domain architecture of the atypical Arf-family GTPase Arl13b involved in cilia formation. Biochem. Biophys. Res. Commun., 2008, 373(1), 119-124. doi: 10.1016/j.bbrc.2008.06.001 PMID: 18554500
  68. Humbert, M.C.; Weihbrecht, K.; Searby, C.C.; Li, Y.; Pope, R.M.; Sheffield, V.C.; Seo, S. ARL13B, PDE6D, and CEP164 form a functional network for INPP5E ciliary targeting. Proc. Natl. Acad. Sci., 2012, 109(48), 19691-19696. doi: 10.1073/pnas.1210916109 PMID: 23150559
  69. Kinzel, D.; Boldt, K.; Davis, E.E.; Burtscher, I.; Trümbach, D.; Diplas, B.; Attié-Bitach, T.; Wurst, W.; Katsanis, N.; Ueffing, M.; Lickert, H. Pitchfork regulates primary cilia disassembly and left-right asymmetry. Dev. Cell, 2010, 19(1), 66-77. doi: 10.1016/j.devcel.2010.06.005 PMID: 20643351
  70. Paridaen, J.T.M.L.; Wilsch-Bräuninger, M.; Huttner, W.B. Asymmetric inheritance of centrosome-associated primary cilium membrane directs ciliogenesis after cell division. Cell, 2013, 155(2), 333-344. doi: 10.1016/j.cell.2013.08.060 PMID: 24120134
  71. Thomas, S.; Cantagrel, V.; Mariani, L.; Serre, V.; Lee, J.E.; Elkhartoufi, N.; de Lonlay, P.; Desguerre, I.; Munnich, A.; Boddaert, N.; Lyonnet, S.; Vekemans, M.; Lisgo, S.N.; Caspary, T.; Gleeson, J.; Attié-Bitach, T. Identification of a novel ARL13B variant in a Joubert syndrome-affected patient with retinal impairment and obesity. Eur. J. Hum. Genet., 2015, 23(5), 621-627. doi: 10.1038/ejhg.2014.156 PMID: 25138100
  72. Paul, P.; van den Hoorn, T.; Jongsma, M.L.M.; Bakker, M.J.; Hengeveld, R.; Janssen, L.; Cresswell, P.; Egan, D.A.; van Ham, M.; ten Brinke, A.; Ovaa, H.; Beijersbergen, R.L.; Kuijl, C.; Neefjes, J. A Genome-wide multidimensional RNAi screen reveals pathways controlling MHC class II antigen presentation. Cell, 2011, 145(2), 268-283. doi: 10.1016/j.cell.2011.03.023 PMID: 21458045
  73. Yang, F.; Li, T.; Peng, Z.; Liu, Y.; Guo, Y. The amphipathic helices of Arfrp1 and Arl14 are sufficient to determine subcellular localizations. J. Biol. Chem., 2020, 295(49), 16643-16654. doi: 10.1074/jbc.RA120.014999 PMID: 32972971
  74. Zhao, J.; Wang, M.; Deng, W.; Zhong, D.; Jiang, Y.; Liao, Y.; Chen, B.; Zhang, X. ADP-ribosylation factor-like GTPase 15 enhances insulin-induced AKT phosphorylation in the IR/IRS1/AKT pathway by interacting with ASAP2 and regulating PDPK1 activity. Biochem. Biophys. Res. Commun., 2017, 486(4), 865-871. doi: 10.1016/j.bbrc.2017.03.079 PMID: 28322786
  75. Zolotarov, Y.; Ma, C.; González-Recio, I.; Hardy, S.; Franken, G.A.C.; Uetani, N.; Latta, F.; Kostantin, E.; Boulais, J.; Thibault, M.P.; Côté, J.F.; Díaz-Moreno, I.; Quintana, A.D.; Hoenderop, J.G.J.; Martínez-Cruz, L.A.; Tremblay, M.L.; de Baaij, J.H.F. ARL15 modulates magnesium homeostasis through N-glycosylation of CNNMs. Cell. Mol. Life Sci., 2021, 78(13), 5427-5445. doi: 10.1007/s00018-021-03832-8 PMID: 34089346
  76. Yang, Y.K.; Qu, H.; Gao, D.; Di, W.; Chen, H.W.; Guo, X.; Zhai, Z.H.; Chen, D.Y. ARF-like protein 16 (ARL16) inhibits RIG-I by binding with its C-terminal domain in a GTP-dependent manner. J. Biol. Chem., 2011, 286(12), 10568-10580. doi: 10.1074/jbc.M110.206896 PMID: 21233210
  77. Behnia, R.; Panic, B.; Whyte, J.R.C.; Munro, S. Targeting of the Arf-like GTPase Arl3p to the Golgi requires N-terminal acetylation and the membrane protein Sys1p. Nat. Cell Biol., 2004, 6(5), 405-413. doi: 10.1038/ncb1120 PMID: 15077113
  78. Setty, S.R.G.; Shin, M.E.; Yoshino, A.; Marks, M.S.; Burd, C.G. Golgi recruitment of GRIP domain proteins by Arf-like GTPase 1 is regulated by Arf-like GTPase 3. Curr. Biol., 2003, 13(5), 401-404. doi: 10.1016/S0960-9822(03)00089-7 PMID: 12620188
  79. Panic, B.; Whyte, J.R.C.; Munro, S. The ARF-like GTPases Arl1p and Arl3p act in a pathway that interacts with vesicle-tethering factors at the Golgi apparatus. Curr. Biol., 2003, 13(5), 405-410. doi: 10.1016/S0960-9822(03)00091-5 PMID: 12620189
  80. Shin, H.W.; Kobayashi, H.; Kitamura, M.; Waguri, S.; Suganuma, T.; Uchiyama, Y.; Nakayama, K. Roles of ARFRP1 (ADP-ribosylation factor-related protein 1) in post-Golgi membrane trafficking. J. Cell Sci., 2005, 118(17), 4039-4048. doi: 10.1242/jcs.02524 PMID: 16129887
  81. Richards, J.B.; Waterworth, D.; O’Rahilly, S.; Hivert, M.F.; Loos, R.J.F.; Perry, J.R.B.; Tanaka, T.; Timpson, N.J.; Semple, R.K.; Soranzo, N.; Song, K.; Rocha, N.; Grundberg, E.; Dupuis, J.; Florez, J.C.; Langenberg, C.; Prokopenko, I.; Saxena, R.; Sladek, R.; Aulchenko, Y.; Evans, D.; Waeber, G.; Erdmann, J.; Burnett, M.S.; Sattar, N.; Devaney, J.; Willenborg, C.; Hingorani, A.; Witteman, J.C.M.; Vollenweider, P.; Glaser, B.; Hengstenberg, C.; Ferrucci, L.; Melzer, D.; Stark, K.; Deanfield, J.; Winogradow, J.; Grassl, M.; Hall, A.S.; Egan, J.M.; Thompson, J.R.; Ricketts, S.L.; König, I.R.; Reinhard, W.; Grundy, S.; Wichmann, H.E.; Barter, P.; Mahley, R.; Kesaniemi, Y.A.; Rader, D.J.; Reilly, M.P.; Epstein, S.E.; Stewart, A.F.R.; Van Duijn, C.M.; Schunkert, H.; Burling, K.; Deloukas, P.; Pastinen, T.; Samani, N.J.; McPherson, R.; Davey Smith, G.; Frayling, T.M.; Wareham, N.J.; Meigs, J.B.; Mooser, V.; Spector, T.D. A genome-wide association study reveals variants in ARL15 that influence adiponectin levels. PLoS Genet., 2009, 5(12), e1000768. doi: 10.1371/journal.pgen.1000768 PMID: 20011104
  82. Gorski, M.; van der Most, P.J.; Teumer, A.; Chu, A.Y.; Li, M.; Mijatovic, V.; Nolte, I.M.; Cocca, M.; Taliun, D.; Gomez, F.; Li, Y.; Tayo, B.; Tin, A.; Feitosa, M.F.; Aspelund, T.; Attia, J.; Biffar, R.; Bochud, M.; Boerwinkle, E.; Borecki, I.; Bottinger, E.P.; Chen, M.H.; Chouraki, V.; Ciullo, M.; Coresh, J.; Cornelis, M.C.; Curhan, G.C.; d’Adamo, A.P.; Dehghan, A.; Dengler, L.; Ding, J.; Eiriksdottir, G.; Endlich, K.; Enroth, S.; Esko, T.; Franco, O.H.; Gasparini, P.; Gieger, C.; Girotto, G.; Gottesman, O.; Gudnason, V.; Gyllensten, U.; Hancock, S.J.; Harris, T.B.; Helmer, C.; Höllerer, S.; Hofer, E.; Hofman, A.; Holliday, E.G.; Homuth, G.; Hu, F.B.; Huth, C.; Hutri-Kähönen, N.; Hwang, S.J.; Imboden, M.; Johansson, Å.; Kähönen, M.; König, W.; Kramer, H.; Krämer, B.K.; Kumar, A.; Kutalik, Z.; Lambert, J.C.; Launer, L.J.; Lehtimäki, T.; de Borst, M.H.; Navis, G.; Swertz, M.; Liu, Y.; Lohman, K.; Loos, R.J.F.; Lu, Y.; Lyytikäinen, L.P.; McEvoy, M.A.; Meisinger, C.; Meitinger, T.; Metspalu, A.; Metzger, M.; Mihailov, E.; Mitchell, P.; Nauck, M.; Oldehinkel, A.J.; Olden, M.; WJH Penninx, B.; Pistis, G.; Pramstaller, P.P.; Probst-Hensch, N.; Raitakari, O.T.; Rettig, R.; Ridker, P.M.; Rivadeneira, F.; Robino, A.; Rosas, S.E.; Ruderfer, D.; Ruggiero, D.; Saba, Y.; Sala, C.; Schmidt, H.; Schmidt, R.; Scott, R.J.; Sedaghat, S.; Smith, A.V.; Sorice, R.; Stengel, B.; Stracke, S.; Strauch, K.; Toniolo, D.; Uitterlinden, A.G.; Ulivi, S.; Viikari, J.S.; Völker, U.; Vollenweider, P.; Völzke, H.; Vuckovic, D.; Waldenberger, M.; Jin Wang, J.; Yang, Q.; Chasman, D.I.; Tromp, G.; Snieder, H.; Heid, I.M.; Fox, C.S.; Köttgen, A.; Pattaro, C.; Böger, C.A.; Fuchsberger, C. 1000 Genomes-based meta-analysis identifies 10 novel loci for kidney function. Sci. Rep., 2017, 7(1), 45040. doi: 10.1038/srep45040 PMID: 28452372
  83. Corre, T.; Arjona, F.J.; Hayward, C.; Youhanna, S.; de Baaij, J.H.F.; Belge, H.; Nägele, N.; Debaix, H.; Blanchard, M.G.; Traglia, M.; Harris, S.E.; Ulivi, S.; Rueedi, R.; Lamparter, D.; Macé, A.; Sala, C.; Lenarduzzi, S.; Ponte, B.; Pruijm, M.; Ackermann, D.; Ehret, G.; Baptista, D.; Polasek, O.; Rudan, I.; Hurd, T.W.; Hastie, N.D.; Vitart, V.; Waeber, G.; Kutalik, Z.; Bergmann, S.; Vargas-Poussou, R.; Konrad, M.; Gasparini, P.; Deary, I.J.; Starr, J.M.; Toniolo, D.; Vollenweider, P.; Hoenderop, J.G.J.; Bindels, R.J.M.; Bochud, M.; Devuyst, O. Genome-wide meta-analysis unravels interactions between magnesium homeostasis and metabolic phenotypes. J. Am. Soc. Nephrol., 2018, 29(1), 335-348. doi: 10.1681/ASN.2017030267 PMID: 29093028
  84. Domínguez-Cruz, M.G.; Muñoz, M.L.; Totomoch-Serra, A.; García-Escalante, M.G.; Burgueño, J.; Valadez-González, N.; Pinto-Escalantes, D.; Díaz-Badillo, Á. Pilot genome-wide association study identifying novel risk loci for type 2 diabetes in a Maya population. Gene, 2018, 677, 324-331. doi: 10.1016/j.gene.2018.08.041 PMID: 30130595
  85. Li, Y.; Yang, Y.; Yao, Y.; Li, X.; Shi, L.; Zhang, Y.; Xiong, Y.; Yan, M.; Yao, Y.; Xiao, C. Association study of ARL15 and CDH13 with T2DM in a han chinese population. Int. J. Med. Sci., 2014, 11(5), 522-527. doi: 10.7150/ijms.8206 PMID: 24688318
  86. Shen, J.; Liu, M.; Xu, J.; Sun, B.; Xu, H.; Zhang, W. ARL15 overexpression attenuates high glucose-induced impairment of insulin signaling and oxidative stress in human umbilical vein endothelial cells. Life Sci., 2019, 220(1), 127-135. doi: 10.1016/j.lfs.2019.01.030 PMID: 30682341
  87. Negi, S.; Juyal, G.; Senapati, S.; Prasad, P.; Gupta, A.; Singh, S.; Kashyap, S.; Kumar, A.; Kumar, U.; Gupta, R.; Kaur, S.; Agrawal, S.; Aggarwal, A.; Ott, J.; Jain, S.; Juyal, R.C.; Thelma, B.K. A genome-wide association study reveals ARL15, a novel non-HLA susceptibility gene for rheumatoid arthritis in North Indians. Arthritis Rheum., 2013, 65(12), 3026-3035. doi: 10.1002/art.38110 PMID: 23918589
  88. Wu, Y.; Bai, Y.; McEwan, D.G.; Bentley, L.; Aravani, D.; Cox, R.D. Palmitoylated small GTPase ARL15 is translocated within Golgi network during adipogenesis. Biol. Open, 2021, 10(12), bio058420. doi: 10.1242/bio.058420 PMID: 34779483
  89. Thomsen, S.K.; Ceroni, A.; van de Bunt, M.; Burrows, C.; Barrett, A.; Scharfmann, R.; Ebner, D.; McCarthy, M.I.; Gloyn, A.L. Systematic functional characterization of candidate causal genes for type 2 diabetes risk variants. Diabetes, 2016, 65(12), 3805-3811. doi: 10.2337/db16-0361 PMID: 27554474
  90. Sun, J.Q.; Yin, R.X.; Shi, G.Y.; Shen, S.W.; Chen, X.; Bin, Y.; Huang, F.; Wang, W.; Lin, W.X.; Pan, S.L. Association of the ARL15 rs6450176 SNP and serum lipid levels in the Jing and Han populations. Int. J. Clin. Exp. Pathol., 2015, 8(10), 12977-12994. PMID: 26722494
  91. Gillingham, A.K.; Munro, S. The small G proteins of the Arf family and their regulators. Annu. Rev. Cell Dev. Biol., 2007, 23(1), 579-611. doi: 10.1146/annurev.cellbio.23.090506.123209 PMID: 17506703
  92. Oparil, S.; Acelajado, M.C.; Bakris, G.L.; Berlowitz, D.R.; Cífková, R.; Dominiczak, A.F.; Grassi, G.; Jordan, J.; Poulter, N.R.; Rodgers, A.; Whelton, P.K. Hypertension. Nat. Rev. Dis. Primers, 2018, 4(1), 18014. doi: 10.1038/nrdp.2018.14 PMID: 29565029
  93. Libby, P.; Theroux, P. Pathophysiology of coronary artery disease. Circulation, 2005, 111(25), 3481-3488. doi: 10.1161/CIRCULATIONAHA.105.537878 PMID: 15983262
  94. Rocha, N.; Payne, F.; Huang-Doran, I.; Sleigh, A.; Fawcett, K.; Adams, C.; Stears, A.; Saudek, V.; O’Rahilly, S.; Barroso, I.; Semple, R.K. The metabolic syndrome- associated small G protein ARL15 plays a role in adipocyte differentiation and adiponectin secretion. Sci. Rep., 2017, 7(1), 17593. doi: 10.1038/s41598-017-17746-8 PMID: 29242557
  95. Chen, Z.; Yu, H.; Shi, X.; Warren, C.R.; Lotta, L.A.; Friesen, M.; Meissner, T.B.; Langenberg, C.; Wabitsch, M.; Wareham, N.; Benson, M.D.; Gerszten, R.E.; Cowan, C.A. Functional screening of candidate causal genes for insulin resistance in human preadipocytes and adipocytes. Circ. Res., 2020, 126(3), 330-346. doi: 10.1161/CIRCRESAHA.119.315246 PMID: 31739742
  96. Oparil, S.; Schmieder, R.E. New approaches in the treatment of hypertension. Circ. Res., 2015, 116(6), 1074-1095. doi: 10.1161/CIRCRESAHA.116.303603 PMID: 25767291
  97. Li, C.; He, J.; Chen, J.; Zhao, J.; Gu, D.; Hixson, J.E.; Rao, D.C.; Jaquish, C.E.; Rice, T.K.; Sung, Y.J.; Kelly, T.N. Genome-wide gene-potassium interaction analyses on blood pressure. Circ. Cardiovasc. Genet., 2017, 10(6), e001811. doi: 10.1161/CIRCGENETICS.117.001811 PMID: 29212900
  98. Scott, R.A.; Lagou, V.; Welch, R.P.; Wheeler, E.; Montasser, M.E.; Luan, J. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat. Genet., 2012, 44(9), 991-1005. doi: 10.1038/ng.2385 PMID: 22885924
  99. Taneera, J.; Prasad, R.B.; Dhaiban, S.; Mohammed, A.K.; Haataja, L.; Arvan, P.; Hamad, M.; Groop, L.; Wollheim, C.B. Silencing of the FTO gene inhibits insulin secretion: An in vitro study using GRINCH cells. Mol. Cell. Endocrinol., 2018, 472, 10-17. doi: 10.1016/j.mce.2018.06.003 PMID: 29890211
  100. Frühbeck, G. Overview of adipose tissue and its role in obesity and metabolic disorders. Methods Mol. Biol., 2008, 456, 1-22. doi: 10.1007/978-1-59745-245-8_1 PMID: 18516549
  101. Klimentidis, Y.C.; Arora, A. Interaction of insulin resistance and related genetic variants with triglyceride-associated genetic variants. Circ. Cardiovasc. Genet., 2016, 9(2), 154-161. doi: 10.1161/CIRCGENETICS.115.001246 PMID: 26850992
  102. Glessner, J.T.; Bradfield, J.P.; Wang, K.; Takahashi, N.; Zhang, H.; Sleiman, P.M.; Mentch, F.D.; Kim, C.E.; Hou, C.; Thomas, K.A.; Garris, M.L.; Deliard, S.; Frackelton, E.C.; Otieno, F.G.; Zhao, J.; Chiavacci, R.M.; Li, M.; Buxbaum, J.D.; Berkowitz, R.I.; Hakonarson, H.; Grant, S.F.A. A genome-wide study reveals copy number variants exclusive to childhood obesity cases. Am. J. Hum. Genet., 2010, 87(5), 661-666. doi: 10.1016/j.ajhg.2010.09.014 PMID: 20950786
  103. Benabdelkamel, H.; Masood, A.; Okla, M.; Al-Naami, M.Y.; Alfadda, A.A. A proteomics-based approach reveals differential regulation of urine proteins between metabolically healthy and unhealthy obese patients. Int. J. Mol. Sci., 2019, 20(19), 4905. doi: 10.3390/ijms20194905 PMID: 31623319
  104. Ried, J.S.; Jeff, M.J.; Chu, A.Y.; Bragg-Gresham, J.L.; van Dongen, J.; Huffman, J.E.; Ahluwalia, T.S.; Cadby, G.; Eklund, N.; Eriksson, J.; Esko, T.; Feitosa, M.F.; Goel, A.; Gorski, M.; Hayward, C.; Heard-Costa, N.L.; Jackson, A.U.; Jokinen, E.; Kanoni, S.; Kristiansson, K.; Kutalik, Z.; Lahti, J.; Luan, J.; Mägi, R.; Mahajan, A.; Mangino, M.; Medina-Gomez, C.; Monda, K.L.; Nolte, I.M.; Pérusse, L.; Prokopenko, I.; Qi, L.; Rose, L.M.; Salvi, E.; Smith, M.T.; Snieder, H.; Stančáková, A.; Ju Sung, Y.; Tachmazidou, I.; Teumer, A.; Thorleifsson, G.; van der Harst, P.; Walker, R.W.; Wang, S.R.; Wild, S.H.; Willems, S.M.; Wong, A.; Zhang, W.; Albrecht, E.; Couto Alves, A.; Bakker, S.J.L.; Barlassina, C.; Bartz, T.M.; Beilby, J.; Bellis, C.; Bergman, R.N.; Bergmann, S.; Blangero, J.; Blüher, M.; Boerwinkle, E.; Bonnycastle, L.L.; Bornstein, S.R.; Bruinenberg, M.; Campbell, H.; Chen, Y.D.I.; Chiang, C.W.K.; Chines, P.S.; Collins, F.S.; Cucca, F.; Cupples, L.A.; D’Avila, F.; de Geus, E.J.C.; Dedoussis, G.; Dimitriou, M.; Döring, A.; Eriksson, J.G.; Farmaki, A.E.; Farrall, M.; Ferreira, T.; Fischer, K.; Forouhi, N.G.; Friedrich, N.; Gjesing, A.P.; Glorioso, N.; Graff, M.; Grallert, H.; Grarup, N.; Gräßler, J.; Grewal, J.; Hamsten, A.; Harder, M.N.; Hartman, C.A.; Hassinen, M.; Hastie, N.; Hattersley, A.T.; Havulinna, A.S.; Heliövaara, M.; Hillege, H.; Hofman, A.; Holmen, O.; Homuth, G.; Hottenga, J.J.; Hui, J.; Husemoen, L.L.; Hysi, P.G.; Isaacs, A.; Ittermann, T.; Jalilzadeh, S.; James, A.L.; Jørgensen, T.; Jousilahti, P.; Jula, A.; Marie Justesen, J.; Justice, A.E.; Kähönen, M.; Karaleftheri, M.; Tee Khaw, K.; Keinanen-Kiukaanniemi, S.M.; Kinnunen, L.; Knekt, P.B.; Koistinen, H.A.; Kolcic, I.; Kooner, I.K.; Koskinen, S.; Kovacs, P.; Kyriakou, T.; Laitinen, T.; Langenberg, C.; Lewin, A.M.; Lichtner, P.; Lindgren, C.M.; Lindström, J.; Linneberg, A.; Lorbeer, R.; Lorentzon, M.; Luben, R.; Lyssenko, V.; Männistö, S.; Manunta, P.; Leach, I.M.; McArdle, W.L.; Mcknight, B.; Mohlke, K.L.; Mihailov, E.; Milani, L.; Mills, R.; Montasser, M.E.; Morris, A.P.; Müller, G.; Musk, A.W.; Narisu, N.; Ong, K.K.; Oostra, B.A.; Osmond, C.; Palotie, A.; Pankow, J.S.; Paternoster, L.; Penninx, B.W.; Pichler, I.; Pilia, M.G.; Polašek, O.; Pramstaller, P.P.; Raitakari, O.T.; Rankinen, T.; Rao, D.C.; Rayner, N.W.; Ribel-Madsen, R.; Rice, T.K.; Richards, M.; Ridker, P.M.; Rivadeneira, F.; Ryan, K.A.; Sanna, S.; Sarzynski, M.A.; Scholtens, S.; Scott, R.A.; Sebert, S.; Southam, L.; Sparsø, T.H.; Steinthorsdottir, V.; Stirrups, K.; Stolk, R.P.; Strauch, K.; Stringham, H.M.; Swertz, M.A.; Swift, A.J.; Tönjes, A.; Tsafantakis, E.; van der Most, P.J.; Van Vliet-Ostaptchouk, J.V.; Vandenput, L.; Vartiainen, E.; Venturini, C.; Verweij, N.; Viikari, J.S.; Vitart, V.; Vohl, M.C.; Vonk, J.M.; Waeber, G.; Widén, E.; Willemsen, G.; Wilsgaard, T.; Winkler, T.W.; Wright, A.F.; Yerges-Armstrong, L.M.; Hua Zhao, J.; Carola Zillikens, M.; Boomsma, D.I.; Bouchard, C.; Chambers, J.C.; Chasman, D.I.; Cusi, D.; Gansevoort, R.T.; Gieger, C.; Hansen, T.; Hicks, A.A.; Hu, F.; Hveem, K.; Jarvelin, M.R.; Kajantie, E.; Kooner, J.S.; Kuh, D.; Kuusisto, J.; Laakso, M.; Lakka, T.A.; Lehtimäki, T.; Metspalu, A.; Njølstad, I.; Ohlsson, C.; Oldehinkel, A.J.; Palmer, L.J.; Pedersen, O.; Perola, M.; Peters, A.; Psaty, B.M.; Puolijoki, H.; Rauramaa, R.; Rudan, I.; Salomaa, V.; Schwarz, P.E.H.; Shudiner, A.R.; Smit, J.H.; Sørensen, T.I.A.; Spector, T.D.; Stefansson, K.; Stumvoll, M.; Tremblay, A.; Tuomilehto, J.; Uitterlinden, A.G.; Uusitupa, M.; Völker, U.; Vollenweider, P.; Wareham, N.J.; Watkins, H.; Wilson, J.F.; Zeggini, E.; Abecasis, G.R.; Boehnke, M.; Borecki, I.B.; Deloukas, P.; van Duijn, C.M.; Fox, C.; Groop, L.C.; Heid, I.M.; Hunter, D.J.; Kaplan, R.C.; McCarthy, M.I.; North, K.E.; O’Connell, J.R.; Schlessinger, D.; Thorsteinsdottir, U.; Strachan, D.P.; Frayling, T.; Hirschhorn, J.N.; Müller-Nurasyid, M.; Loos, R.J.F A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape. Nat. Commun., 2016, 7(1), 13357. doi: 10.1038/ncomms13357 PMID: 27876822
  105. Teslovich, T.M.; Musunuru, K.; Smith, A.V.; Edmondson, A.C.; Stylianou, I.M.; Koseki, M.; Pirruccello, J.P.; Ripatti, S.; Chasman, D.I.; Willer, C.J.; Johansen, C.T.; Fouchier, S.W.; Isaacs, A.; Peloso, G.M.; Barbalic, M.; Ricketts, S.L.; Bis, J.C.; Aulchenko, Y.S.; Thorleifsson, G.; Feitosa, M.F.; Chambers, J.; Orho-Melander, M.; Melander, O.; Johnson, T.; Li, X.; Guo, X.; Li, M.; Shin Cho, Y.; Jin Go, M.; Jin Kim, Y.; Lee, J.Y.; Park, T.; Kim, K.; Sim, X.; Twee-Hee Ong, R.; Croteau-Chonka, D.C.; Lange, L.A.; Smith, J.D.; Song, K.; Zhao, H. Biological, clinical and population relevance of 95 loci for blood lipids. Nature, 2010, 466(7307), 707-713. doi: 10.1038/nature09270 PMID: 20686565
  106. Kapoor, M.; Wang, J.C.; Wetherill, L.; Le, N.; Bertelsen, S.; Hinrichs, A.L.; Budde, J.; Agrawal, A.; Almasy, L.; Bucholz, K.; Dick, D.M.; Harari, O.; Xiaoling, X.; Hesselbrock, V.; Kramer, J.; Nurnberger, J.I., Jr; Rice, J.; Schuckit, M.; Tischfield, J.; Porjesz, B.; Edenberg, H.J.; Bierut, L.; Foroud, T.; Goate, A. Genome-wide survival analysis of age at onset of alcohol dependence in extended high-risk COGA families. Drug Alcohol Depend., 2014, 142, 56-62. doi: 10.1016/j.drugalcdep.2014.05.023 PMID: 24962325
  107. Mahajan, A.; Go, M.J.; Zhang, W.; Below, J.E.; Gaulton, K.J.; Ferreira, T.; Horikoshi, M.; Johnson, A.D.; Ng, M.C.Y.; Prokopenko, I.; Saleheen, D.; Wang, X.; Zeggini, E.; Abecasis, G.R.; Adair, L.S.; Almgren, P.; Atalay, M.; Aung, T.; Baldassarre, D.; Balkau, B.; Bao, Y.; Barnett, A.H.; Barroso, I.; Basit, A.; Been, L.F.; Beilby, J.; Bell, G.I.; Benediktsson, R.; Bergman, R.N.; Boehm, B.O.; Boerwinkle, E.; Bonnycastle, L.L.; Burtt, N.; Cai, Q.; Campbell, H.; Carey, J.; Cauchi, S.; Caulfield, M.; Chan, J.C.N.; Chang, L.C.; Chang, T.J.; Chang, Y.C.; Charpentier, G.; Chen, C.H.; Chen, H.; Chen, Y.T.; Chia, K.S.; Chidambaram, M.; Chines, P.S.; Cho, N.H.; Cho, Y.M.; Chuang, L.M.; Collins, F.S.; Cornelis, M.C.; Couper, D.J.; Crenshaw, A.T.; van Dam, R.M.; Danesh, J.; Das, D.; de Faire, U.; Dedoussis, G.; Deloukas, P.; Dimas, A.S.; Dina, C.; Doney, A.S.F.; Donnelly, P.J.; Dorkhan, M.; van Duijn, C.; Dupuis, J.; Edkins, S.; Elliott, P.; Emilsson, V.; Erbel, R.; Eriksson, J.G.; Escobedo, J.; Esko, T.; Eury, E.; Florez, J.C.; Fontanillas, P.; Forouhi, N.G.; Forsen, T.; Fox, C.; Fraser, R.M.; Frayling, T.M.; Froguel, P.; Frossard, P.; Gao, Y.; Gertow, K.; Gieger, C.; Gigante, B.; Grallert, H.; Grant, G.B.; Groop, L.C.; Groves, C.J.; Grundberg, E.; Guiducci, C.; Hamsten, A.; Han, B.G.; Hara, K.; Hassanali, N.; Hattersley, A.T.; Hayward, C.; Hedman, A.K.; Herder, C.; Hofman, A.; Holmen, O.L.; Hovingh, K.; Hreidarsson, A.B.; Hu, C.; Hu, F.B.; Hui, J.; Humphries, S.E.; Hunt, S.E.; Hunter, D.J.; Hveem, K.; Hydrie, Z.I.; Ikegami, H.; Illig, T.; Ingelsson, E.; Islam, M.; Isomaa, B.; Jackson, A.U.; Jafar, T.; James, A.; Jia, W.; Jöckel, K.H.; Jonsson, A.; Jowett, J.B.M.; Kadowaki, T.; Kang, H.M.; Kanoni, S.; Kao, W.H.L.; Kathiresan, S.; Kato, N.; Katulanda, P.; Keinanen-Kiukaanniemi, S.M.; Kelly, A.M.; Khan, H.; Khaw, K.T.; Khor, C.C.; Kim, H.L.; Kim, S.; Kim, Y.J.; Kinnunen, L.; Klopp, N.; Kong, A.; Korpi-Hyövälti, E.; Kowlessur, S.; Kraft, P.; Kravic, J.; Kristensen, M.M.; Krithika, S.; Kumar, A.; Kumate, J.; Kuusisto, J.; Kwak, S.H.; Laakso, M.; Lagou, V.; Lakka, T.A.; Langenberg, C.; Langford, C.; Lawrence, R.; Leander, K.; Lee, J.M.; Lee, N.R.; Li, M.; Li, X.; Li, Y.; Liang, J.; Liju, S.; Lim, W.Y.; Lind, L.; Lindgren, C.M.; Lindholm, E.; Liu, C.T.; Liu, J.J.; Lobbens, S.; Long, J.; Loos, R.J.F.; Lu, W.; Luan, J.; Lyssenko, V.; Ma, R.C.W.; Maeda, S.; Mägi, R.; Männistö, S.; Matthews, D.R.; Meigs, J.B.; Melander, O.; Metspalu, A.; Meyer, J.; Mirza, G.; Mihailov, E.; Moebus, S.; Mohan, V.; Mohlke, K.L.; Morris, A.D.; Mühleisen, T.W.; Müller-Nurasyid, M.; Musk, B.; Nakamura, J.; Nakashima, E.; Navarro, P.; Ng, P.K.; Nica, A.C.; Nilsson, P.M.; Njølstad, I.; Nöthen, M.M.; Ohnaka, K.; Ong, T.H.; Owen, K.R.; Palmer, C.N.A.; Pankow, J.S.; Park, K.S.; Parkin, M.; Pechlivanis, S.; Pedersen, N.L.; Peltonen, L.; Perry, J.R.B.; Peters, A.; Pinidiyapathirage, J.M.; Platou, C.G.P.; Potter, S.; Price, J.F.; Qi, L.; Radha, V.; Rallidis, L.; Rasheed, A.; Rathmann, W.; Rauramaa, R.; Raychaudhuri, S.; Rayner, N.W.; Rees, S.D.; Rehnberg, E.; Ripatti, S.; Robertson, N.; Roden, M.; Rossin, E.J.; Rudan, I.; Rybin, D.; Saaristo, T.E.; Salomaa, V.; Saltevo, J.; Samuel, M.; Sanghera, D.K.; Saramies, J.; Scott, J.; Scott, L.J.; Scott, R.A.; Segrè, A.V.; Sehmi, J.; Sennblad, B.; Shah, N.; Shah, S.; Shera, A.S.; Shu, X.O.; Shuldiner, A.R.; Sigurðsson, G.; Sijbrands, E.; Silveira, A.; Sim, X.; Sivapalaratnam, S.; Small, K.S.; So, W.Y.; Stančáková, A.; Stefansson, K.; Steinbach, G.; Steinthorsdottir, V.; Stirrups, K.; Strawbridge, R.J.; Stringham, H.M.; Sun, Q.; Suo, C.; Syvänen, A.C.; Takayanagi, R.; Takeuchi, F.; Tay, W.T.; Teslovich, T.M.; Thorand, B.; Thorleifsson, G.; Thorsteinsdottir, U.; Tikkanen, E.; Trakalo, J.; Tremoli, E.; Trip, M.D.; Tsai, F.J.; Tuomi, T.; Tuomilehto, J.; Uitterlinden, A.G.; Valladares-Salgado, A.; Vedantam, S.; Veglia, F.; Voight, B.F.; Wang, C.; Wareham, N.J.; Wennauer, R.; Wickremasinghe, A.R.; Wilsgaard, T.; Wilson, J.F.; Wiltshire, S.; Winckler, W.; Wong, T.Y.; Wood, A.R.; Wu, J.Y.; Wu, Y.; Yamamoto, K.; Yamauchi, T.; Yang, M.; Yengo, L.; Yokota, M.; Young, R.; Zabaneh, D.; Zhang, F.; Zhang, R.; Zheng, W.; Zimmet, P.Z.; Altshuler, D.; Bowden, D.W.; Cho, Y.S.; Cox, N.J.; Cruz, M.; Hanis, C.L.; Kooner, J.; Lee, J.Y.; Seielstad, M.; Teo, Y.Y.; Boehnke, M.; Parra, E.J.; Chambers, J.C.; Tai, E.S.; McCarthy, M.I.; Morris, A.P. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat. Genet., 2014, 46(3), 234-244. doi: 10.1038/ng.2897 PMID: 24509480
  108. viatte, S.; Plant, D.; Han, B.; Fu, B.; Yarwood, A.; Thomson, W.; Symmons, D.P.M.; Worthington, J.; Young, A.; Hyrich, K.L.; Morgan, A.W.; Wilson, A.G.; Isaacs, J.D.; Raychaudhuri, S.; Barton, A. Association of HLA-DRB1 haplotypes with rheumatoid arthritis severity, mortality, and treatment response. JAMA, 2015, 313(16), 1645-1656. doi: 10.1001/jama.2015.3435 PMID: 25919528
  109. Anaya, J-M.; Castiblanco, J.; Lessard, C. Chapter 18Non-HLA genes and autoimmune diseases. In: Autoimmunity: From Bench to Bedside; El Rosario University Press: Bogota, (Colombia), 2013.
  110. El-Gabalawy, H.S.; Robinson, D.B.; Daha, N.A.; Oen, K.G.; Smolik, I.; Elias, B.; Hart, D.; Bernstein, C.N.; Sun, Y.; Lu, Y.; Houwing-Duistermaat, J.J.; Siminovitch, K.A. Non-HLA genes modulate the risk of rheumatoid arthritis associated with HLA-DRB1 in a susceptible North American Native population. Genes Immun., 2011, 12(7), 568-574. doi: 10.1038/gene.2011.30 PMID: 21614018
  111. Carrión, M.; Frommer, K.W.; Pérez-García, S.; Müller-Ladner, U.; Gomariz, R.P.; Neumann, E. The adipokine network in rheumatic joint diseases. Int. J. Mol. Sci., 2019, 20(17), 4091. doi: 10.3390/ijms20174091 PMID: 31443349
  112. Pandey, A.K.; Saxena, A.; Dey, S.K.; Kanjilal, M.; Kumar, U.; Thelma, B.K. Correlation between an intronic SNP genotype and ARL15 level in rheumatoid arthritis. J. Genet., 2021, 100(2), 26. doi: 10.1007/s12041-021-01286-2 PMID: 34187973
  113. Wang, J.; Qi, X.; Zhang, X.; Yan, W.; You, C. Genetic polymorphisms of ARL15 and HLA-DMA are associated with rheumatoid arthritis in Han population from northwest China. Xibao Yu Fenzi Mianyixue Zazhi, 2017, 33(12), 1681-1685. PMID: 29382430
  114. Smolen, J.S.; Aletaha, D.; Koeller, M.; Weisman, M.H.; Emery, P. New therapies for treatment of rheumatoid arthritis. Lancet, 2007, 370(9602), 1861-1874. doi: 10.1016/S0140-6736(07)60784-3 PMID: 17570481
  115. Chaudhari, K.; Rizvi, S.; Syed, B.A. Rheumatoid arthritis: Current and future trends. Nat. Rev. Drug Discov., 2016, 15(5), 305-306. doi: 10.1038/nrd.2016.21 PMID: 27080040
  116. Scott, D.L.; Wolfe, F.; Huizinga, T.W.J. Rheumatoid arthritis. Lancet, 2010, 376(9746), 1094-1108. doi: 10.1016/S0140-6736(10)60826-4 PMID: 20870100
  117. Symmons, D.P.M. What is rheumatoid arthritis? Br. Med. Bull., 1995, 51(2), 243-248. doi: 10.1093/oxfordjournals.bmb.a072958 PMID: 7552061
  118. Schett, G.; Gravallese, E. Bone erosion in rheumatoid arthritis: Mechanisms, diagnosis and treatment. Nat. Rev. Rheumatol., 2012, 8(11), 656-664. doi: 10.1038/nrrheum.2012.153 PMID: 23007741
  119. Ngian, G.S. Rheumatoid arthritis. Aust. Fam. Physician, 2010, 39(9), 626-628. PMID: 20877764
  120. Ridgley, L.A.; Anderson, A.E.; Pratt, A.G. What are the dominant cytokines in early rheumatoid arthritis? Curr. Opin. Rheumatol., 2018, 30(2), 207-214. doi: 10.1097/BOR.0000000000000470 PMID: 29206659
  121. Wasserman, A.M. Diagnosis and management of rheumatoid arthritis. Am. Fam. Physician, 2011, 84(11), 1245-1252.
  122. Svendsen, A.J.; Kyvik, K.O.; Houen, G.; Junker, P.; Christensen, K.; Christiansen, L.; Nielsen, C.; Skytthe, A.; Hjelmborg, J.V. On the origin of rheumatoid arthritis: The impact of environment and genes--a population based twin study. PLoS One, 2013, 8(2), e57304. doi: 10.1371/journal.pone.0057304 PMID: 23468964
  123. Liao, K.P.; Alfredsson, L.; Karlson, E.W. Environmental influences on risk for rheumatoid arthritis. Curr. Opin. Rheumatol., 2009, 21(3), 279-283. doi: 10.1097/BOR.0b013e32832a2e16 PMID: 19318947
  124. Clements, J.N. Treatment of rheumatoid arthritis: A review of recommendations and emerging therapy. Formulary, 2011, 46(12), 532-545.
  125. Heidari, B. Rheumatoid Arthritis: Early diagnosis and treatment outcomes. Caspian J. Intern. Med., 2011, 2(1), 161-170. PMID: 24024009
  126. Demoruelle, M.K.; Deane, K.D. Treatment strategies in early rheumatoid arthritis and prevention of rheumatoid arthritis. Curr. Rheumatol. Rep., 2012, 14(5), 472-480. doi: 10.1007/s11926-012-0275-1 PMID: 22773387
  127. Burmester, G.R.; Pope, J.E. Novel treatment strategies in rheumatoid arthritis. Lancet, 2017, 389(10086), 2338-2348. doi: 10.1016/S0140-6736(17)31491-5 PMID: 28612748
  128. Dale, J.; Alcorn, N.; Capell, H.; Madhok, R. Combination therapy for rheumatoid arthritis: Methotrexate and sulfasalazine together or with other DMARDs. Nat. Clin. Pract. Rheumatol., 2007, 3(8), 450-458. doi: 10.1038/ncprheum0562 PMID: 17664952
  129. Kahlenberg, J.M.; Fox, D.A. Advances in the medical treatment of rheumatoid arthritis. Hand Clin., 2011, 27(1), 11-20. doi: 10.1016/j.hcl.2010.09.002 PMID: 21176795
  130. Sergeant, J.C.; Hyrich, K.L.; Anderson, J.; Kopec-Harding, K.; Hope, H.F.; Symmons, D.P.M.; Barton, A.; Verstappen, S.M.M. Prediction of primary non-response to methotrexate therapy using demographic, clinical and psychosocial variables: Results from the UK Rheumatoid Arthritis Medication Study (RAMS). Arthritis Res. Ther., 2018, 20(1), 147. doi: 10.1186/s13075-018-1645-5 PMID: 30005689
  131. Curtis, J.R.; Singh, J.A. Use of biologics in rheumatoid arthritis: Current and emerging paradigms of care. Clin. Ther., 2011, 33(6), 679-707. doi: 10.1016/j.clinthera.2011.05.044 PMID: 21704234
  132. Baldasseroni, S.; Antenore, A.; Di Serio, C.; Orso, F.; Lonetto, G.; Bartoli, N.; Foschini, A.; Marella, A.; Pratesi, A.; Scarantino, S.; Fumagalli, S.; Monami, M.; Mannucci, E.; Marchionni, N.; Tarantini, F. Adiponectin, diabetes and ischemic heart failure: A challenging relationship. Cardiovasc. Diabetol., 2012, 11(1), 151. doi: 10.1186/1475-2840-11-151 PMID: 23249664
  133. Chen, X.; Lu, J.; Bao, J.; Guo, J.; Shi, J.; Wang, Y. Adiponectin: A biomarker for rheumatoid arthritis? Cytokine Growth Factor Rev., 2013, 24(1), 83-89. doi: 10.1016/j.cytogfr.2012.07.004 PMID: 22910140
  134. Tan, W.; Wang, F.; Zhang, M.; Guo, D.; Zhang, Q.; He, S. High adiponectin and adiponectin receptor 1 expression in synovial fluids and synovial tissues of patients with rheumatoid arthritis. Semin. Arthritis Rheum., 2009, 38(6), 420-427. doi: 10.1016/j.semarthrit.2008.01.017 PMID: 18395775
  135. Frommer, K.W.; Schäffler, A.; Büchler, C.; Steinmeyer, J.; Rickert, M.; Rehart, S.; Brentano, F.; Gay, S.; Müller-Ladner, U.; Neumann, E. Adiponectin isoforms: A potential therapeutic target in rheumatoid arthritis? Ann. Rheum. Dis., 2012, 71(10), 1724-1732. doi: 10.1136/annrheumdis-2011-200924 PMID: 22532632
  136. Kusunoki, N.; Kitahara, K.; Kojima, F.; Tanaka, N.; Kaneko, K.; Endo, H.; Suguro, T.; Kawai, S. Adiponectin stimulates prostaglandin E2 production in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum., 2010, 62(6), 1641-1649. doi: 10.1002/art.27450 PMID: 20222108
  137. Kashyap, S.; Kumar, U.; Pandey, A.K.; Kanjilal, M.; Chattopadhyay, P.; Yadav, C.; Thelma, B.K. Functional characterisation of ADP ribosylation factor-like protein 15 in rheumatoid arthritis synovial fibroblasts. Clin. Exp. Rheumatol., 2018, 36(4), 581-588. PMID: 29465355
  138. Srirangan, S.; Choy, E.H. The role of Interleukin 6 in the pathophysiology of rheumatoid arthritis. Ther. Adv. Musculoskelet. Dis., 2010, 2(5), 247-256. doi: 10.1177/1759720X10378372 PMID: 22870451
  139. Kim, G.W.; Lee, N.R.; Pi, R.H.; Lim, Y.S.; Lee, Y.M.; Lee, J.M.; Jeong, H.S.; Chung, S.H. IL-6 inhibitors for treatment of rheumatoid arthritis: Past, present, and future. Arch. Pharm. Res., 2015, 38(5), 575-584. doi: 10.1007/s12272-015-0569-8 PMID: 25648633
  140. Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol., 2014, 6(10), a016295. doi: 10.1101/cshperspect.a016295 PMID: 25190079
  141. Hwang, S.Y.; Kim, J.Y.; Kim, K.W.; Park, M.K.; Moon, Y.; Kim, W.U.; Kim, H.Y. IL-17 induces production of IL-6 and IL-8 in rheumatoid arthritis synovial fibroblasts via NF-kappaB- and PI3-kinase/Akt-dependent pathways. Arthritis Res., 2004, 6(2), R120-R128. doi: 10.1186/ar1038 PMID: 15059275
  142. Burrage, P. S.; Mix, K. S.; Brinckerhoff, C. E. Matrix metalloproteinases: Role in arthritis. Front. Biosci., 2006, 11((1 P.447-888)), 529-543. doi: 10.2741/1817
  143. Tong, K.M.; Chen, C.P.; Huang, K.C.; Shieh, D.C.; Cheng, H.C.; Tzeng, C.Y.; Chen, K.H.; Chiu, Y.C.; Tang, C.H. Adiponectin increases MMP-3 expression in human chondrocytes through adipor1 signaling pathway. J. Cell. Biochem., 2011, 112(5), 1431-1440. doi: 10.1002/jcb.23059 PMID: 21321996
  144. Araki, Y.; Mimura, T. Matrix metalloproteinase gene activation resulting from disordred epigenetic mechanisms in rheumatoid arthritis. Int. J. Mol. Sci., 2017, 18(5), 905. doi: 10.3390/ijms18050905 PMID: 28441353
  145. Robinson, D.R.; Tashjian, A.H., Jr; Levine, L. Prostaglandin-stimulated bone resorption by rheumatoid synovia. A possible mechanism for bone destruction in rheumatoid arthritis. J. Clin. Invest., 1975, 56(5), 1181-1188. doi: 10.1172/JCI108195 PMID: 1184744
  146. McCoy, J.M.; Wicks, J.R.; Audoly, L.P. The role of prostaglandin E2 receptors in the pathogenesis of rheumatoid arthritis. J. Clin. Invest., 2002, 110(5), 651-658. doi: 10.1172/JCI0215528 PMID: 12208866
  147. Firestein, G.S. Evolving concepts of rheumatoid arthritis. Nature, 2003, 423(6937), 356-361. doi: 10.1038/nature01661 PMID: 12748655
  148. Thakur, S.; Riyaz, B.; Patil, A.; Kaur, A.; Kapoor, B.; Mishra, V. Novel drug delivery systems for NSAIDs in management of rheumatoid arthritis: An overview. Biomed. Pharmacother., 2018, 106, 1011-1023. doi: 10.1016/j.biopha.2018.07.027 PMID: 30119166
  149. Sharma, A.; Saini, M.; Kundu, S.; Thelma, B.K. Computational insight into the three-dimensional structure of ADP ribosylation factor like protein 15, a novel susceptibility gene for rheumatoid arthritis. J. Biomol. Struct. Dyn., 2020, 0(0), 1-16. doi: 10.1080/07391102.2020.1860826 PMID: 33356902
  150. Yang, J.; Zhang, Y. I-TASSER server: New development for protein structure and function predictions. Nucleic Acids Res., 2015, 43(W1), W174-W181. doi: 10.1093/nar/gkv342 PMID: 25883148
  151. Zhang, C.; Mortuza, S.M.; He, B.; Wang, Y.; Zhang, Y. Template‐based and free modeling of I‐TASSER and QUARK pipelines using predicted contact maps in CASP12. Proteins, 2018, 86(S1), 136-151. doi: 10.1002/prot.25414 PMID: 29082551
  152. Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S.A.A.; Ballard, A.J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.; Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.; Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.; Silver, D.; Vinyals, O.; Senior, A.W.; Kavukcuoglu, K.; Kohli, P.; Hassabis, D. Highly accurate protein structure prediction with AlphaFold. Nature, 2021, 596(7873), 583-589. doi: 10.1038/s41586-021-03819-2 PMID: 34265844
  153. Wiederstein, M.; Sippl, M.J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res., 2007, 35(Web Server (S2)), W407-W410. doi: 10.1093/nar/gkm290 PMID: 17517781
  154. Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res., 2021, 49(D1), D605-D612. doi: 10.1093/nar/gkaa1074 PMID: 33237311

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers