Formation of thin GaAs buffer layers on silicon for light-emitting devices

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

This paper presents the experimental results on research of growth processes of GaAs layers on silicon substrates by molecular beam epitaxy. The formation of buffer Si layer in a single growth process has been found to significantly improve the crystalline quality of the GaAs layers formed on its surface, as well as to prevent the formation of anti-phase domains both on of fcutted towards the [110] direction and on singular Si(100) substrates. It has been demonstrated that the use of cyclic thermal annealing at temperatures 350–660°C in the flow of arsenic atoms makes it possible to reduce the number of threading dislocations and increase the smoothness of the GaAs layers surface. At the same time, the article considers possible mechanisms that lead to an improvement in the quality of the surface layers of GaAs. It is shown that the thus obtained GaAs layers of submicron thickness on the singular Si(100) substrates have a mean square value of surface roughness 1.9 nm. The principal possibility of using thin GaAs layers on silicon as templates for forming on them light-emitting semiconductor heterostructures with active area based on self-organizing InAs quantum dots and InGaAs quantum well is presented. They are shown to exhibit photoluminescence at 1.2 µm at room temperature.

作者简介

V. Lendyashova

Saint Petersburg State University; Alferov University

Email: erilerican@gmail.com
俄罗斯联邦, St. Petersburg; St. Petersburg

I. Ilkiv

Saint Petersburg State University; Alferov University

Email: fiskerr@ymail.com
俄罗斯联邦, St. Petersburg; St. Petersburg

B. Borodin

Ioffe Institute

Email: erilerican@gmail.com
俄罗斯联邦, St. Petersburg

D. Kirilenko

Ioffe Institute

Email: erilerican@gmail.com
俄罗斯联邦, St. Petersburg

A. Dragunova

HSE University; Alferov University

Email: erilerican@gmail.com

International laboratory of quantum optoelectronics

俄罗斯联邦, St. Petersburg; St. Petersburg

T. Shugabaev

Saint Petersburg State University; Alferov University

编辑信件的主要联系方式.
Email: erilerican@gmail.com
俄罗斯联邦, St. Petersburg; St. Petersburg

G. Cirlin

Saint Petersburg State University; Alferov University; ITMO University

Email: erilerican@gmail.com
俄罗斯联邦, St. Petersburg; St. Petersburg; St. Petersburg

参考

  1. Thomson D., Zilkie A., Bowers J.E., Komljenovic T., Reed G.T., Vivien L., Marris-Morini D., Cassan E., Virot L., Fédéli J.M., Hartmann J.M., Schmid J.H., Xu D.X., Boeuf F., O’Brien P., Mashanovich G.Z., Nedeljkovic M.N. // J. Opt. 2016. V. 18. № 7. P. 073003. https://www.doi.org/10.1088/2040-8978/18/7/073003
  2. Chen X., Milosevic M.M., Stanković S., Reynolds S., Bucio T.D., Li K., Thomson D.J., Gardes F., Reed G.T. // Proc. IEEE. 2018. V. 106. № 12. P. 2101. https://www.doi.org/10.1109/JPROC.2018.2854372
  3. Tang M., Park J.S., Wang Z., Chen S., Jurczak P., Seeds A., Liu H. // Prog. Quantum Electronics. 2019. V. 66. P. 1. https://www.doi.org/10.1016/j.pquantelec.2019.05.002
  4. Jiang C., Liu H., Wang J., Ren X., Wang Q., Liu Z., Ma B., Liu K., Ren R., Zhang Y., Cai S., Huang Y. // Appl. Phys. Lett. 2022. V. 121. № 6. P. 061102. https://www.doi.org/10.1063/5.0098264
  5. Li Q., Lau K.M. // Prog. Cryst. Growth Charact. Mater. 2017. V. 63. № 4. P. 105. https://www.doi.org/10.1016/j.pcrysgrow.2017.10.001
  6. Tanoto H., Yoon S.F., Lew K.L., Loke W.K., Dohrman C., Fitzgerald E.A., Tang L.J. // Appl. Phys. Lett. 2009. V. 95. № 14. P. 141905. https://www.doi.org/10.1063/1.3243984
  7. Loke W.K., Wang Y., Gao Y., Khaw L., Lee K.E.K., Tan C.S., Fitzgerald E.A., Yoon S.F. // Mater. Sci. Semicond. 2022. V. 146. P. 106663. https://www.doi.org/10.1016/j.mssp.2022.106663
  8. Kunert B., Mols Y., Baryshniskova M., Waldron N., Schulze A., Langer R. // Semicond. Sci. Technol. 2018. V. 33. № 9. P. 093002. https://www.doi.org/10.1088/1361-6641/aad655
  9. Norman J.C., Jung D., Zhang Z., Wan Y., Liu S., Shang C., Herrick R.W., Chow W.W., Gossard A.C., Bowers J.E. // IEEE J. Quantum Electron. 2019. V. 55. № 2. P. 1. https://www.doi.org/10.1109/JQE.2019.2901508
  10. Norman J., Kennedy M.J., Selvidge J., Li Q., Wan Y., Liu A.Y., Callahan P.G., Echlin M.P., Pollock T.M., Lau K.M., Gossard A.C., Bowers J.E. // Opt. Express. 2017. V. 25. № 4. P. 3927. https://www.doi.org/10.1364/OE.25.003927
  11. Wan Y., Norman J., Li Q., Kennedy M.J., Di L., Zhang C., Huang D., Zhang Z., Liu A.Y., Torres A., Jung D., Gossard A.C., Hu E.L., Lau K.M., Bowers J.E. // Optica. 2017. V. 4. № 8. P. 940. https://www.doi.org/10.1364/OPTICA.4.000940
  12. Benyoucef M., Alzoubi T., Reithmaier J.P., Wu M., Trampert A. // Physica Status Solidi A. 2014. V. 211. № 4. P. 817. https://www.doi.org/10.1002/pssa.201330395
  13. Wu M., Trampert A., Al-Zoubi T., Benyoucef M., Reithmaier J.P. // Acta Materialia. 2015. V. 90. P. 133. https://www.doi.org/10.1016/j.actamat.2015.02.042
  14. Wang J.S., Chen J.F., Huang J.L., Wang P.Y., Guo X.J. // Appl. Phys. Lett. 2000. V. 77. № 19. P. 3027. https://www.doi.org/10.1063/1.1323735
  15. Zhao Z.M., Hul’ko O., Kim H.J., Liu J., Sugahari T., Shi B., Xie Y.H. // J. Crystal Growth. 2004. V. 271. № 3–4. P. 450. https://www.doi.org/10.1016/j.jcrysgro.2004.08.013
  16. Kwoen J., Jang B., Lee J., Kageyama T., Watanabe K., Arakawa Y. // Optics Express. 2018. V. 26. № 9. P. 11568. https://www.doi.org/10.1364/OE.26.011568
  17. Wang Y., Ma B., Li J., Liu Z., Jiang C., Li C., Lui H., Zhang Y., Zhang Y., Wang Q., Xie X., Qiu X., Ren X., Wei X. // Optics Express. 2023. V. 31. № 3. P. 4862. https://www.doi.org/10.1364/OE.475976
  18. Wang T., Liu H., Lee A., Pozzi F., Seeds A. // Optics Express. 2011. V. 19. № 12. P. 11381. https://www.doi.org/10.1364/OE.19.011381
  19. Chen S.M., Tang M.C., Wu J., Jiang Q., Dorogan V.G., Benamara M., Mazur Y.I., Salamo G.J., Seeds A.J., Liu H. // Electronics Lett. 2014. V. 50. № 20. P. 1467. https://www.doi.org/10.1049/el.2014.2414
  20. Chen S., Li W., Wu J., Jiang Q., Tang M., Shutts S., Elliott S.N., Sobiesierski A., Seeds A.J., Ross I., Smowton P.M., Liu H. // Nature Photonics. 2016. V. 10. № 5. P. 307. https://www.doi.org/10.1038/nphoton.2016.21
  21. Ishizaka A., Shiraki Y. // J. Electrochem. Soc. 1986. V. 133. № 4. P. 666. https://www.doi.org/10.1149/1.2108651
  22. Kasu M., Kobayashi N. // Jpn. J. Appl. Phys. 1994. V. 33. № 1S. P. 712. https://www.doi.org/10.1143/jjap.33.712
  23. Kasu M., Kobayashi N. // J. Appl. Phys. 1995. V. 78. № 5. P. 3026. https://www.doi.org/10.1063/1.360053
  24. Choi D., Harris J.S., E. Kim E., McIntyre P.C., Cagnon J., Stemmer S. // J. Cryst. Growth. 2009. V. 311. № 7. P. 1962. https://www.doi.org/10.1016/j.jcrysgro.2008.09.138
  25. Jung D., Callahan P.G., Shin B., Mukherjee K., Gossard A.C., Bowers J.E. // J. Appl. Phys. 2017. V. 122. № 22. P. 225703. https://www.doi.org/10.1063/1.5001360
  26. Садофьев Ю. Г. // Физика и техника полупроводников. 2012. Т. 46. № . 11. С. 1393. https://www.doi.org/10.1134/S106378261211019X
  27. Ilkiv I., Lendyashova V., Talalaev V., Borodin B., Mokhov D., Reznik R., Cirlin G. MBE Growth and Optical Properties of InAs Quantum Dots in Si. // Proc. 2022 International Conference Laser Optics, Saint Petersburg, Russia. 2022. P. 1. https://www.doi.org/10.1109/ICLO54117.2022. 9839762
  28. Lendyashova V.V., Ilkiv I.V., Borodin B.R., Ubyivovk E.V., Reznik R.R., Talalaev V.G., Cirlin G.E. // St. Petersburg Polytechnic University Journal: Physics and Mathematics. 2022. V. 15. Iss. 3.2. P. 75. https://www.doi.org/10.18721/JPM.153.214
  29. Bansal B., Gokhale M.R., Bhattacharya A., Arora B.M. // J. Appl. Phys. 2007. V. 101. № 9. P. 094303. https://www.doi.org/10.1063/1.2710292
  30. Su X.B., Ding Y., Ma B., Zhang K.L., Chen Z.S., Li J.L., Cui X.R., Xu Y.Q., Ni H.Q., Niu Z.C. // Nanoscale Res. Lett. 2018. V. 13. P. 1. https://www.doi.org/10.1186/s11671-018-2472-y

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024