Structure of surface steps in the deformed Zr62Cu22Fe6Al10 amorphous alloy
- Autores: Abrosimova G.Е.1, Volkov N.А.1, Aronin А.S.1
-
Afiliações:
- Osipyan Institute of Solid State Physics RAS
- Edição: Nº 10 (2024)
- Páginas: 3-8
- Seção: Articles
- URL: https://transsyst.ru/1028-0960/article/view/664727
- DOI: https://doi.org/10.31857/S1028096024100012
- EDN: https://elibrary.ru/SHQZTW
- ID: 664727
Citar
Resumo
The structure of the side surfaces of the bulk Zr62Cu22Fe6Al10 amorphous sample after compressive deformation at room temperature was studied using X-ray diffraction and scanning electron microscopy methods. After preparation, the samples of the amorphous alloy had a square cross-section of 5 × 5 mm and a length of 40 mm. Examining the side surface allows one to avoid influencing the surface structure of the tool used for deformation. Plastic deformation of amorphous alloys occurs through the formation and propagation of shear bands. During compressive deformation at room temperature, a system of steps was formed on the end surfaces of the sample, caused by shear bands coming to the surface. Steps on surfaces have different sizes (thickness and height). It has been established that the structure of large steps is complex: they consist of elementary steps 15–30 nm thick. The local deformation was estimated based on the size of the steps. The formation of a small number of nanocrystals during deformation was discovered. The nanocrystals are approximately 10 nm in size. The results obtained open a new direction for research into the structure of deformed amorphous alloys and nanocrystallization processes under the influence of deformation.
Palavras-chave
Sobre autores
G. Abrosimova
Osipyan Institute of Solid State Physics RAS
Email: aronin@issp.ac.ru
Rússia, Chernogolovka
N. Volkov
Osipyan Institute of Solid State Physics RAS
Email: aronin@issp.ac.ru
Rússia, Chernogolovka
А. Aronin
Osipyan Institute of Solid State Physics RAS
Autor responsável pela correspondência
Email: aronin@issp.ac.ru
Rússia, Chernogolovka
Bibliografia
- Greer A.L., Cheng Y.Q., Ma, E. // Mater. Sci. Eng. R Rep. 2013. V. 74. P. 71. https://www.doi.org/10.1016/j.mser.2013.04.001
- Boucharat N., Hebert R., Rösner H., Valiev R., Wilde G. // Scr. Mater.2005. V. 53. P. 823. https://www.doi.org/10.1016/j.scriptamat.2005.06.004
- Ma G.Z., Song K.K., Sun B.A., Yan Z.J., Kühn U., Chen D., Eckert J. // J. Mater. Sci.2013. V. 48. P.6825. https://www.doi.org/10.1007/s10853-013-7488-1.
- Maaß R., Löffler J.F. // Adv. Funct. Materials.2015. V. 25. P. 2353. https://www.doi.org/10.1002/adfm.201404223
- Şopu D., Scudino S., Bian X.L., Gammer C., Eckert, J. // Scr. Mater.2020. V. 178. P. 57. https://www.doi.org/10.1016/j.scriptamat.2019.11.006
- Hebert R.J., Boucharat N., Perepezko J.H., Rösner H., Wilde G. // J. Alloys Compd. 2007. V. 434-435. P. 18. https://www.doi.org/10.1016/j.jallcom.2006.08.134
- Aronin A.S., Louzguine-Luzgin D.V. // Mech. Mater. 2017. V. 113. P. 19. https://www.doi.org/10.1016/j.mechmat.2017.07.007
- Hassanpour A., Vaidya M., Divinski S.V., Wilde G. // Acta Mater. 2021. V. 209. P. 116785. https://www.doi.org/10.1016/j.actamat.2021.116785
- Wilde G., Rösner H. // Appl. Phys. Lett. 2011. V. 98. P. 251904. https://doi.org/10.1063/1.3602315
- Kang S.J., Cao Q.P., Liu J., Tang Y., Wang X.D., Zhang D.X., Ahn I. S., Caron A., Jiang J.Z. // J. Alloys Compd. 2019. V. 795. P. 493. https://doi.org/10.1016/j.jallcom.2019.05.026
- Abrosimova G., Aronin A., Barkalov O., Matveev D., Rybchenko O., Maslov V., Tkatch V. // Phys. Solid State. 2011. V. 53. P. 229. https://www.doi.org/10.1134/S1063783411020028
- Rösner H., Peterlechner M., Kübel C., Schmidt V., Wilde G. // Ultramicroscopy. 2014. V. 142. P. 1. https://www.doi.org/10.1016/j.ultramic.2014.03.006
- Chen N., Frank R., Asao N., Louzguine-Luzgin D.V., Sharma P., Wang J.Q., Xie G.Q., Ishikawa Y., Hatakeyama N., Lin Y.C. // Acta Mater.2011. V. 59. P. 6433. https://www.doi.org/10.1016/j.actamat.2011.07.007.
- Pan J., Chen Q., Liu L., Li Y. // Acta Mater.2011. V. 59. P. 5146. https://www.doi.org/10.1016/j.actamat.2011.04.047.
- Liu C., Roddatis V., Kenesei P., Maaß R. // Acta Mater.2017. V. 140. P. 206. https://www.doi.org/10.1016/j.actamat.2017.08.032
- Maaß R., Löffler J.F. // Adv. Funct. Materials2015. V.25. P. 2353. https://www.doi.org/10.1002/adfm.201404223
- Chen Y.M., Ohkubo T., Mukai T., Hono K. // J. Mater. Res. 2009. V. 24. P. 1. https://doi.org/10.1557/jmr.2009.0001
- He J., Kaban I., Mattern N., Song K., Sun B., Zhao J., Kim D. H., Eckert J., Greer A. L. // Sci. Rep. 2016. V. 6. P.25832. https://www.doi.org/10.1038/srep25832.
- Mironchuk B., Abrosimova G., Bozhko S., Pershina E., Aronin A. // J. Non-Crystal. Solids. 2022. V. 577. P. 121279. https://www.doi.org/10.1016/j.jnoncrysol.2021.121279
- Aronin A.S., Aksenov O.I., Matveev D.V., Pershina E.A., Abrosimova G.E. // Mater. Lett. 2023. V. 344. P. 134478. https://www.doi.org/10.1016/j.matlet.2023.134478
- Aronin A.S., Volkov N.A., Pershina E.A. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2024. V.18. P. 27. https://www.doi.org/10.1134/S1027451024010051
- Абросимова Г.Е., Аронин А.С., Холстинина Н.Н. // ФТТ. 2010. Т. 52. Р. 417.
- Glezer А.M., Louzguine-Luzgin D.V., Khriplivets I.A., Sundeev R.V., Gunderov D.V., Bazlov A.I., Pogozhev Y.S. // Mater. Lett. 2019. V. 256. P. 126631. https://doi.org/10.1016/j.matlet.2019.12663
- Abrosimova G., Aksenov O., Volkov N., Matveev D., Pershina E., Aronin A. // Metals. 2024 V. 14. P. 771. https://doi.org/0.3390/met14070771
Arquivos suplementares
