Obtaining Magnesium Nanoparticles by Receiving Flow Levitation

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Due to the development of the chemical industry, the need to obtain high-purity monodisperse nanoparticles is increasing. Therefore, it is necessary to choose the right method of obtaining. The paper demonstrates a unique method – induction flow levitation, which allows to obtain a large list of metal nanoparticles on one installation. In this work, magnesium nanoparticles were obtained using this method. The morphology was studied using scanning electron microscopy, where the resulting nanoparticles were clusters of primary particles. Energy dispersive analysis showed that the surface of magnesium nanoparticles after interaction with atmospheric air is completely covered with a small layer of oxide. Analysis of the phase composition showed that the powder consists of magnesium without traces of oxide. Mass spectrometry with inductively coupled plasma showed the purity of the obtained particles 99.99%. The characteristics of the porous structure were determined by low temperature porosimetry. The size of the obtained particles did not exceed 40 nm, and the average size was 23 nm. The used method of obtaining nanoparticles demonstrated high productivity (up to 50 g/h) and continuity of the process of obtaining nanoparticles (NP), the ability to control the size of the obtained nanoparticles (NP) in a wide range, non-contact heating, which leads to a high purity of the resulting product confirmed by mass spectrometry with inductive plasma bound.

Авторлар туралы

A. Markov

Nizhny Novgorod State University N.I. Lobachevsky

Хат алмасуға жауапты Автор.
Email: markov.art.nik@gmail.com
Russia, 603022, Nizhny Novgorod

I. Vorotyntsev

Russian University of Chemical Technology D.I. Mendeleev

Email: markov.art.nik@gmail.com
Russia, 125047, Moscow

P. Grachev

Nizhny Novgorod State Technical University, R.E. Alekseeva

Email: markov.art.nik@gmail.com
Russia, 603950, Nizhny Novgorod

A. Atlaskin

Russian University of Chemical Technology D.I. Mendeleev

Email: markov.art.nik@gmail.com
Russia, 125047, Moscow

V. Vorotyntsev

Nizhny Novgorod State Technical University, R.E. Alekseeva

Email: markov.art.nik@gmail.com
Russia, 603950, Nizhny Novgorod

G. Kleiman

Nizhny Novgorod State University N.I. Lobachevsky

Email: markov.art.nik@gmail.com
Russia, 603022, Nizhny Novgorod

A. Barysheva

Nizhny Novgorod State University N.I. Lobachevsky

Email: markov.art.nik@gmail.com
Russia, 603022, Nizhny Novgorod

S. Suvorov

Nizhny Novgorod State University N.I. Lobachevsky

Email: markov.art.nik@gmail.com
Russia, 603022, Nizhny Novgorod

A. Kapinos

Nizhny Novgorod State University N.I. Lobachevsky

Email: markov.art.nik@gmail.com
Russia, 603022, Nizhny Novgorod

A. Vorotyntsev

Nizhny Novgorod State University N.I. Lobachevsky

Email: markov.art.nik@gmail.com
Russia, 603022, Nizhny Novgorod

Әдебиет тізімі

  1. Panova T.V., Kovivchak V.S. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2021. V. 15. № 1. P. 157. https://www.doi.org/10.1134/S102745102202032X
  2. Zhang X., Yang R., Yang J., Zhao W., Zheng J., Tian W., Li X. // Int. J. Hydrogen Energy. 2011. V. 36. Iss. 8. P. 4967. https://www.doi.org/10.1016/J.IJHYDENE.2010.12.052
  3. Wagemans R.W.P., van Lenthe J.H., de Jongh P.E., van Dillen A.J., de Jong K.P. // J. Am. Chem. Soc. 2005. V. 127. № 47. P. 16675. https://www.doi.org/10.1021/JA054569H
  4. Liu Y., Zhu J., Liu Z., Zhu Y., Zhang J., Li L. // Front. Chem. 2020. V. 7. P. 949. https://www.doi.org/10.3389/FCHEM.2019.00949
  5. KA W., RP V.D. // Rev. Phys. Chem. 2007. V. 58. P. 267. https://www.doi.org/10.1146/ANNUREV.PHYSCHEM. 58.032806.104607
  6. Biggins J.S., Yazdi S., Ringe E. // Nano Lett. 2018. V. 18 № 6. P. 3752. https://www.doi.org/10.1021/ACS.NANOLETT.8B00955
  7. Hyeon-Ho Jeong G., Mark A., Peer Fischer // Chem. Commun. 2016. V. 52. № 82. P. 12179. https://www.doi.org/10.1039/C6CC06800F
  8. Ringe E. // J. Phys. Chem. C. Nanomater. Interfaces. 2020. V. 124. № 29. P. 15665. https://www.doi.org/10.1021/ACS.JPCC.0C03871
  9. Peng H., Zhu L., Zhang Z. // PP Composites. 2012. V. 11. № 3. P. 231. https://www.doi.org/10.1163/1568554041526558
  10. Aksenova V.V., Kanunnikova O.M., Burnyshev I.N., Pushkarev B.E., Ladyanov V.I. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2022. V. 16 № 1. P. 68. https://www.doi.org/10.1134/S1027451022010025
  11. Mostafa A.M., Okil M., ElFaham M.M., Mostafa A.M., Mostafa A.M. // JOSA B. 2020. V. 37. № 9. P. 2620. https://www.doi.org/10.1364/JOSAB.398543
  12. Haas I., Gedanken A. // Chem. Commun. 2008. № 15. P. 1795. https://www.doi.org/10.1039/B717670H
  13. Sergeev G.B. // J. Nanoparticle Res. 2003. V. 5. № 5. P. 529. https://www.doi.org/10.1023/B:NANO.0000006153. 65107.42
  14. Aurbach D., Lu Z., Schechter Z., Gofer Y., Gizbar H., Turgeman R., Cohen Y., Moshkovich M., Levi E. // Nature. 2000. V. 407 № 6805. P. 724–727. https://www.doi.org/10.1038/35037553
  15. Kisza A., Kaźmierczak J., Borresen B., Haarberg G.M., Tunold R. // J. Appl. Electrochem. 1993 V. 25 № 10. P. 940. https://www.doi.org/10.1007/BF00241588
  16. Markov A.N., Vorotyntsev A.V., Kapinos A.A., Petukhov A.N., Pryakhina V.I., Kazarina O.V., Atlaskin A.A., Otvagina K.V., Vorotyntsev V.M., Vorotyntsev I.V. // ACS Sustain. Chem. Eng. 2022. V. 10 № 24. P. 7929. https://www.doi.org/10.1021/ACSSUSCHEMENG. 2C00940
  17. Zhigach A.N., Leipunsky I.O., Kuskov M.L., Berezkina N.G., Afanasenkova E.S., Safronova O.A., Kudrov B.V., Lopez G.W., Skryleva E.A. // J. Alloys Compd. 2020. V. 819. P. 153054. https://www.doi.org/10.1016/J.JALLCOM.2019.153054
  18. Aravindan S., Rao P.V., Ponappa K. // J. Magnes. Alloy. 2015. V. 3 № 1. P. 52. https://www.doi.org/10.1016/J.JMA.2014.12.008
  19. Zheng X.M., Duan X.N., Sun Y.Y., Shang H.J. // Sol. Adv. Mater. Res. 2014. V. 997. P. 312. https://www.doi.org/10.4028/WWW.SCIENTIFIC.NET/ AMR.997.312
  20. Vassileva E., Furuta N. // J. Anal. Chem. 2001. V. 370. № 1. P. 52. https://www.doi.org/10.1007/S002160100744
  21. Morozov A.G., Martemyanova T.V., Dodonov V.A., Kazarina O.V., Fedushkin I.L. // Eur. J. Inorg. Chem. 2019. V. 2019. Iss. 39–40. P. 4198–4204. https://doi.org/10.1002/ejic.201900715

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (93KB)
3.

Жүктеу (726KB)
4.

Жүктеу (866KB)
5.

Жүктеу (107KB)

© А.Н. Марков, А.А. Капинос, С.С. Суворов, А.В. Барышева, Г.М. Клейман, В.М. Воротынцев, А.А. Атласкин, П.П. Грачев, И.В. Воротынцев, А.В. Воротынцев, 2023