Теоретическое изучение электронного обмена между металлической поверхностью и атомом водорода в возбужденном p-состоянии

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Численно изучены некоторые особенности электронного обмена между ионами и поверхностью металлов, обусловленные ее атомной структурой. Моделирование основано на трехмерной реализации метода распространения волновых пакетов. Изученная система состояла из металлической поверхности Al(110) и возбужденного атома водорода с электроном, находящимся в p-состоянии, которому не свойственна сферическая симметрия. При рассмотрении модельной статической задачи было показано, что электронный обмен более эффективен при ориентации оси симметрии p-орбитали перпендикулярно поверхности металла, нежели параллельно. Также анализ полученных данных показал, что зависимость заселенности энергетического уровня атома от времени имеет экспоненциальный спад. Рассмотрение динамической задачи показывает, что для движущегося вдоль поверхности металла возбужденного атома водорода электронный обмен не зависит от ориентации p-орбитали относительно направления движения атома. Исследование динамики электронного обмена с поверхностью позволяет наблюдать для p-орбиталей, ось симметрии которых направлена параллельно поверхности металла, расхождения двух частей электронной плотности переходящего на поверхность электрона относительно плоскости симметрии p-орбитали.

Об авторах

С. С. Москаленко

Московский государственный университет им. М.В. Ломоносова

Email: ivan.gainullin@physics.msu.ru
Россия, 119992, Москва

И. К. Гайнуллин

Московский государственный университет им. М.В. Ломоносова

Автор, ответственный за переписку.
Email: ivan.gainullin@physics.msu.ru
Россия, 119992, Москва

Список литературы

  1. Hutchings G.J., Haruta M. // Appl. Catal. A. 2005. V. 291. P. 2. https://www.doi.org/10.1016/j.apcata.2005.05.044
  2. Lai X., Clair T.P.St., Valden M., Goodman D.W. // Prog. Surf. Sci. 1998. V. 59. P. 25. https://www.doi.org/10.1016/S0079-6816(98)00034-3
  3. Lai X., Clair T.P.St., Goodman D.W. // Faraday Discuss. 1999. V. 114. P. 279. https://www.doi.org/10.1039/A902795E
  4. Bacal M., Wada M. // Appl. Phys. Rev. 2015. V. 2. P. 021305. https://www.doi.org/10.1063/1.4921298
  5. Gainullin I.K. // Surf. Sci. 2018. V. 677. P. 324. https://www.doi.org/10.1016/j.susc.2018.08.007
  6. Usman E.Yu., Urazgil’din I.F., Borisov A.G., Gauyacq J.P. // Phys. Rev. B. 2001. V. 64. P. 205405. https://www.doi.org/10.1103/PhysRevB.64.205405
  7. Amanbaev E.R., Shestakov D.K., Gainullin I.K. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2009. V. 3. P. 865. https://www.doi.org/10.1134/S1027451009060032
  8. Magunov A.A., Shestakov D.K., Gainullin I.K., Urazgil’din I.F. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2008. V. 2. P. 764. https://www.doi.org/10.1134/S1027451008050170
  9. Gainullin I.K., Usman E.Yu., Song Y.W., Urazgil’din I.F. // Vacuum. 2003. V. 72. P. 263. https://www.doi.org/10.1016/j.vacuum.2003.07.001
  10. Zykova E.Y., Khaidarov A.A., Ivanenko I.P., Gainullin I.K. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2012. V. 6. P. 877. https://www.doi.org/10.1134/S102745101211016X
  11. Klavsyuk A.L., Kolesnikov S.V., Gainullin I.K., Saletsky A.M. // Eur. Phys. J. B. 2012. V. 85. P. 331. https://www.doi.org/10.1140/epjb/e2012-30352-3
  12. Amanbaev E.R., Gainullin I.K., Zykova E.Yu., Urazgildin I.F. // Thin Solid Films. 2011. V. 519. P. 4737. https://www.doi.org/10.1016/j.tsf.2011.01.026
  13. Obreshkov B., Thumm U. // Phys. Rev. A. 2013. V. 87. P. 022903. https://www.doi.org/10.1103/PhysRevA.87.022903
  14. Bryukvina L.I., Lipko S.V., Martynovich E.F. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2013. V. 7. № 4. P. 617. https://www.doi.org/10.1134/S1027451013040071
  15. Stueckelberg E.C.G. // Helvetica Physica Acta. 1932. V. 5. P. 369.
  16. Gainullin I.K. // UFN. 2020. V. 63. P. 888. https://www.doi.org/10.3367/UFNe.2019.11.038691.
  17. Yin C., Guo Z., Gellman A.J. // J. Phys. Chem. C. 2020. V. 124. P. 10605. https://www.doi.org/10.1021/acs.jpcc.0c02058
  18. Bruckner B., Bauer P., Primetzhofer D. // Surf. Sci. 2020. V. 691. P. 121491. https://www.doi.org/10.1016/j.susc.2019.121491
  19. Oohara W., Kaji T., Hirose K. et al. // AIP Advances. 2020. V. 10. P. 095006. https://www.doi.org/10.1063/5.0020697
  20. Oohara W., Fujii M., Watai M., Hiraoka Y., Egawa M., Morinaga Y., Takamori S., Yoshida M. // AIP Advances. 2019. V. 9. P. 085303. https://www.doi.org/10.1063/1.5109805
  21. Gao L., Zhu Y., Shi Y., Liu P., Xiao Y., Li G., Liu Y., Esaulov V.A., Chen X., Chen L., Guo Y. // Phys. Rev. A. 2017. V. 96. P. 052705. https://www.doi.org/10.1103/PhysRevA.96.052705
  22. Shaw J., Zhang Y., Doerr D., Chakraborty H., Monismith D. // Phys. Rev. A. 2019. V. 98. P. 052705. https://www.doi.org/10.1103/PhysRevA.98.052705
  23. Shaw J., Monismith D., Zhang Y., Doerr D., Chakra- borty H.S. // Atoms. 2020. V. 7. P. 89. https://www.doi.org/10.3390/atoms7030089
  24. Iglesias-García A., Romero M.A., García E.A., Goldberg E.C. // Phys. Rev. B. 2020. V. 102. P. 115406. https://www.doi.org/10.1103/PhysRevB.102.115406
  25. Liu J. et al. // Phys. Rev. A. 2020. V. 101. P. 032706. https://www.doi.org/10.1103/PhysRevA.101.032706
  26. Xiao Y., Shi Y., Liu P., Zhu Y., Gao L., Guo Y., Chen L., Chen X., Esaulov V. // Nucl. Instum. Methods. Phys. Res. B. 2019. V. 450. P. 73. https://www.doi.org/10.1016/j.nimb.2018.11.022
  27. Mamedov N.V., Mamedov I.M. // Bull. Russ. Acad. Sci.: Phys. 2020. V. 84 P. 713. https://www.doi.org/10.3103/S1062873820060155
  28. Balakshin Y.V., Kozhemiako A.V., Evseev A.P., Minnebaev D.K., Elsehly E.M. // Moscow University Phys. Bull. 2020. V. 75. P. 218. https://www.doi.org/10.3103/S0027134920030030
  29. Shemukhin A.A., Smirnov A.M., Evseev A.P., Vorobyeva E.A., Kozhemiako A.V., Minnebaev D.K., Balakshin Y.V., Nazarov A.V., Chernysh V.S. // Moscow University Phys. Bull. 2020. V. 75. P. 133. https://www.doi.org/10.3103/S0027134920020113
  30. Sereda I., Tseluyko A., Ryabchikov D., Hrechko Y., Azarenkov N. // Vacuum. 2019. V. 162. P. 163. https://www.doi.org/10.1016/j.vacuum.2019.01.046
  31. Aleksandrov A.F., Gainullin I.K., Sonkin M.A. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech.2020. V. 14. P. 791. https://www.doi.org/10.1134/S1027451020040205
  32. Gainullin I.K. // Moscow University Phys. Bull. 2019. V. 74. P. 585. https://www.doi.org/10.3103/S0027134919060158
  33. Majorosi S., Czirják A. // Comp. Phys. Comm. 2016. V. 208. P. 9. https://www.doi.org/10.1016/j.cpc.2016.07.006
  34. Fu Y., Zeng J., Yuan J. // Comp. Phys. Comm. 2017. V. 210. P. 181. https://www.doi.org/10.1016/j.cpc.2016.09.016
  35. Lüdde H.J., Horbatsch M., Kirchner T. // Eur. Phys. J. B. 2018. V. 91. P. 99. https://www.doi.org/10.1140/epjb/e2018-90165-x
  36. Zhou S.P., Liu A.H., Liu F.C., Wang C.C., Ding D.J. // Chinese Phys. B. 2019. V. 28. P. 083101. https://www.doi.org/10.1088/1674-1056/28/8/083101
  37. Liu Q., Liu F., Hou C. // Procedia Computer Sci. 2020. V. 171. P. 312. https://www.doi.org/10.1016/j.procs.2020.04.032
  38. Gainullin I.K., Klavsyuk A.L. // Bull. Russ. Acad. Sci. Phys. 2012. V. 76. P. 542. https://www.doi.org/10.3103/S1062873812050115
  39. Riascos V.Q. et al. // Phys. Rev. A. 2021. V. 103. № 6. P. 062805. https://www.doi.org/10.1103/PhysRevA.103.062805
  40. Fu-Ming T. et al. // Acta Physica Sinica. 2020. V. 69. № 23. P. 234202. https://www.doi.org/10.7498/aps.69.20200700
  41. Wang L., Sun G., Liu X. et al. // Nucl. Instrum. Methods. Phys. Res. B. 2021. V. 497. P. 10. https://www.doi.org/10.1016/j.nimb.2021.03.022
  42. Salvo C., Karmakar P., Yarmoff J. // Phys. Rev. B. 2018. V. 98. P. 035437. https://www.doi.org/10.1103/PhysRevB.98.035437
  43. Urazgil’din I.F. // Phys. Rev. B. 1993. V. 47. P. 4139. https://www.doi.org/10.1103/PhysRevB.47.4139
  44. Tolstogouzov A., Daolio S., Pagura C. // Surf. Sci. 1999. V. 441. P. 213. https://www.doi.org/10.1016/S0039-6028(99)00881-X
  45. Elovikov S.S., Zykova E.Yu., Mosunov A.S. et al. // Bull. Russ. Acad. Sci. Phys. 2002. V. 66. P. 558.
  46. Mashkova E.S. // Nucl. Instrum. Methods. Phys. Res. B. 2003. V. 212. P. 164.
  47. Zinoviev A.N., Babenko P.Y., Meluzova D.S., Shergin A.P. // JETP Letters. 2018. V. 108. P. 633.
  48. Brongersma H.H., Draxler M., de Ridder M., Bauer P. // Surf. Sci. 2007. V. 62. P. 63.
  49. He X., Zhou W., Wang Z.Y., Zhang Y.N., Shi J., Wu R.Q., Yarmoff J.A. // Phys. Rev. Lett. 2013. V. 110. P. 156101.
  50. Souda R., Ayzawa T., Hayami W., Otani S., Ishizawa Y. // Phys. Rev. B. 1990. V. 42. P. 7761. https://www.doi.org/10.1103/PhysRevB.42.7761
  51. Gainullin I.K., Usman E.Yu., Song Y.W., Urazgil’din I.F. // Vacuum. 2004. V. 72. P. 263.
  52. Gainullin I.K., Usman E.Y., Urazgil’din I.F. // Nucl. Instrum. Methods Phys. Res. B. 2005. V. 232. P. 22.
  53. Gainullin I.K., Urazgildin I.F. // Phys. Rev. B. 2006. V. 74. № 20. P. 205403.
  54. Shestakov D.K., Polivnikova T.Yu., Gainullin I.K., Urazgildin I.F. // Nuclear Instrum. Methods Phys. Res. B. 2009. V. 267. P. 2596.
  55. Gainullin I.K. // Surf. Sci. 2019. V. 681. P. 158.
  56. Гайнуллин И.К. // Вестник МГУ. Серия 3. Физика. Астрономия. 2019. №. 5. С. 67.
  57. Gainullin I.K. // Phys. Rev. A. 2019. V. 100. P. 032712.
  58. Гайнуллин И.К. // Успехи физических наук. Т. 190. С. 950. https://www.doi.org/10.3367/UFNr.2019.11.038691.
  59. Martynenko Yu.V. // Rad. Eff. Defects. Solids. 1973. V. 20. P. 211.
  60. Winter H. // Phys. Rep. 2002. V. 367. P. 387.
  61. Los J., Geerlings J.J.C. // Phys. Rep. 1990. V. 190. P. 133.
  62. Canario A.R. et al. // Phys. Rev. B. 2005. V. 71. № 12. P. 121401.
  63. Ermoshin V.A., Kazansky A.K. // Phys. Lett. A. 1996. V. 218. P. 99.
  64. Gainullin I.K., Sonkin M.A. // Phys. Rev. A. 2015. V. 92. P. 022710.
  65. Gainullin I.K., Sonkin M.A. // Computer Phys. Commun. 2015. V. 188. P. 68.
  66. Gainullin I.K. // Computer Phys. Commun. 2017. V. 210. P. 72.
  67. Gainullin I.K. // Phys. Rev. A. 2017. V. 95. № 5. P. 052705.
  68. Jennings P.J., Jones R.O., Weinert M. // Phys. Rev. B. 1988. V. 37. P. 6113.
  69. Chulkov E.V., Silkin V.M., Echenique P.M. // Surf. Sci. 1999. V. 437. P. 330.

© С.С. Москаленко, И.К. Гайнуллин, 2022