Investigation of the Dependence of the Yield of Neutrons and Protons of the DD Reaction from Ti and CVD Diamond on the Target Rotation Angle

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

At the HELIS ion accelerator, the dependence of the yield of nuclear DD reaction products (neutrons and protons) on the angle of rotation of a Ti and CVD diamond target relative to the axis of the D+ ion beam at energies E ≤ 35 keV was studied. Neutron detection was carried out by two independent methods: proportional counters filled with 3He and a scintillation detector with a stilbene crystal. Protons were detected using a diamond detector. The detectors were located on the side and behind the target. The CVD diamond target had a polycrystalline structure and texture with (100) grain orientation. The crystal structure of the titanium target was homogeneous and isotropic. The measurements showed the dependence of the neutron flux recorded by the detectors located on the side and behind the target on the orientation of the target made of textured CVD diamond in the deuterium ion beam at energies of 25 and 30 keV. The proton yield from the CVD diamond target showed a dependence on the target rotation angle at an energy of 25 keV. For the Ti target, no such effects were observed. The orientational dependence in the yield of neutrons and protons from textured diamond is explained by the effect of channeling deuterium ions in its structure.

About the authors

M. A. Negodaev

P.N. Lebedev Physical Institute, RAS

Email: ruseckijas@lebedev.ru
Russia, 119991, Moscow

S. A. Meshaninov

Insitution “Project Center ITER”, Private Institution of the State Atomic Energy Corporation Rosatom

Email: ruseckijas@lebedev.ru
Russia, 123182, Moscow

K. K. Artemev

Insitution “Project Center ITER”, Private Institution of the State Atomic Energy Corporation Rosatom

Email: ruseckijas@lebedev.ru
Russia, 123182, Moscow

N. B. Rodionov

Insitution “Project Center ITER”, Private Institution of the State Atomic Energy Corporation Rosatom

Email: ruseckijas@lebedev.ru
Russia, 123182, Moscow

V. N. Amosov

Insitution “Project Center ITER”, Private Institution of the State Atomic Energy Corporation Rosatom

Email: ruseckijas@lebedev.ru
Russia, 123182, Moscow

V. I. Tsekhosh

P.N. Lebedev Physical Institute, RAS

Email: ruseckijas@lebedev.ru
Russia, 119991, Moscow

A. F. Popovich

P.N. Lebedev Physical Institute, RAS

Email: ruseckijas@lebedev.ru
Russia, 119991, Moscow

K. V. Shpakov

P.N. Lebedev Physical Institute, RAS

Email: ruseckijas@lebedev.ru
Russia, 119991, Moscow

A. S. Rusetskii

P.N. Lebedev Physical Institute, RAS

Author for correspondence.
Email: ruseckijas@lebedev.ru
Russia, 119991, Moscow

D. A. Skopintsev

Insitution “Project Center ITER”, Private Institution of the State Atomic Energy Corporation Rosatom

Email: ruseckijas@lebedev.ru
Russia, 123182, Moscow

References

  1. Bagulya A.V., Dalkarov O.D., Negodaev M.A. et al. // Bull. Lebedev Phys. Inst. 2012. V. 39. P. 247. https://www.doi.org/10.3103/S1068335612090011
  2. Bagulya A.V., Dalkarov O.D., Negodaev M.A. et al. // Bull. Lebedev Phys. Inst. 2012. V. 39. P. 325. https://www.doi.org/10.3103/S1068335612120019
  3. Bagulya A.V., Dalkarov O.D., Negodaev M.A. et al. // Bull. Lebedev Phys. Inst. 2013. V. 40. P. 282. https://www.doi.org/10.3103/S1068335613100023
  4. Bagulya A.V., Dalkarov O.D., Negodaev M.A. et al. // Bull. Lebedev Phys. Inst. 2013. V. 40. P. 305. https://www.doi.org/10.3103/S1068335613110018
  5. Bagulya A.V., Dalkarov O.D., Negodaev M.A., Rusetskii A.S., Chubenko A.P. // Phys. Scr. 2015. V. 90. P. 074051. https://www.doi.org/10.1088/0031-8949/90/7/074051
  6. Bagulya A.V., Dalkarov O.D., Negodaev M.A. et al. // Nucl. Instrum. Methods Phys. Res. B. 2015. V. 355. P. 340. https://doi.org/10.1016/j.nimb.2015.01.021
  7. Bagulya A.V., Dalkarov O.D., Negodaev M.A., Pivovarov Yu.L., Rusetskii A.S., Tukhfatullin T.A. // Nuclear Instrum. Methods Phys. Res. B. 2017. V. 402. P. 243. https://www.doi.org/10.1016/J.NIMB.2017.02.059
  8. Bagulya A.V., Dalkarov O.D., Negodaev M.A., Rusetskii A.S. // Phys. Particles Nuclei. 2017. V. 48. № 5. P. 691. https://www.doi.org/10.1134/S106377961705004 5
  9. Dalkarov O.D., Negodaev M.A., Rusetskii A.S., Chubenko A.P., Pivovarov Yu. L., Tukhfatullin T.A. // Phy. Rev. Accelerators and Beam. 2019. V. 22. P. 034201. https://www.doi.org/10.1103/PHYSREVACCELBEAMS. 22.034201
  10. Dalkarov O.D., Negodaev M.A., Rusetskii A.S. et al. // J. Phys.: Conf. Series. 2019. V. 1390. P. 012002. https://www.doi.org/10.1088/1742-6596/1390/1/012002
  11. Dalkarov O.D., Negodaev M.A., Rusetskii A.S. et al. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2020. V. 14. № 2. P. 220. https://www.doi.org/10.1134/S102745102002024X
  12. Dalkarov O.D., Negodaev M.A., Rusetskii A.S. et al. // JINST. 2020. V. 15. P. C06062. https://doi.org/10.1088/1748-0221/15/06/C06062
  13. Bagulya A.V., Dalkarov O.D., Negodaev M.A. et al. // Nucl. Instrum. Methods Phys. Res. B. 2017. V. 402. P. 243. https://www.doi.org/10.1016/j.nimb.2017.02.059
  14. Negodaev M.A., Kirsanov M.A., Popovich A.F. et al. // Bull. Lebedev Phys. Inst. 2022. V. 49. № 4. P. 110. https://www.doi.org/10.3103/S1068335622040030
  15. Dalkarov O.D., Negodaev M.A., Rusetskii A.S. et al. // Instrum. Experimental Tech. 2020. V. 63. № 1. P. 19. https://www.doi.org/10.1134/S002044122001011X
  16. Ralchenko V.G., Pleuler E., Lu F.X., Sovyk D.N., Bolshakov A.P., Guo S.B., Tang W.Z., Gontar I.V., Khomich A.A., Zavedeev E.V., Konov V.I. // Diam. Relat. Mater. 2012. V. 23. P. 172. https://www.doi.org/10.1016/j.diamond.2011.12.031
  17. Abdrashitov S.V., Bogdanov O.V., Korotchenko K.B. et al. // Nucl. Instrum. Methods Phys. Res. B. 2017. V. 402. P. 106. https://doi.org/10.1016/j.nimb.2017.03.132
  18. Korotchenko K.B., Tukhfatullin T.A., Pivovarov Y.L., Eikhorn Yu.L. // J. Phys.: Conf. Ser. 2016. V. 732. P. 012031. https://doi.org/10.1088/1742-6596/732/1/012031
  19. Korotchenko K.B., Tukhfatullin T.A., Pivovarov Y.L., Eikhorn Yu.L. // J. Phys.: Conf. Ser. 2016. V. 732. P. 012031. 1https://doi.org/10.1088/1742-6596/732/1/01203
  20. Dalkarov O.D., Glushkov N.A., Negodaev M.A., Rusetsky A.S., Oginov A.V., Kirsanov M.A., Popovich A.F. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2020. V. 14. № 2. P. 226. https://www.doi.org/10.1134/S1027451020020251
  21. Артемьев К.К., Амосов В.Н., Родионов Н.Б. и др. // Сборник тезисов XIX Всероссийской конференции “Диагностика высокотемпературной плазмы”, 27 сентября–1 октября 2021 г., Сочи. С. 179.
  22. ANSYS Engineering Simulation Software (2022) ANSYS, Inc. https://www.ansys.com/ Cited 20 June 2022.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (92KB)
3.

Download (116KB)
4.

Download (103KB)
5.

Download (26KB)
6.

Download (1MB)

Copyright (c) 2023 М.А. Негодаев, А.С. Русецкий, К.В. Шпаков, А.Ф. Попович, В.И. Цехош, В.Н. Амосов, Н.Б. Родионов, К.К. Артемьев, С.А. Мещанинов, Д.А. Скопинцев