Brittle fracture of an elastic layer with a defect in the form of a circle under biaxial loading

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Based on experimental data on the combined loading of an infinite layer weakened by a circular hole in a brittle material, its critical state, determined by the energy criterion, is modeled. The failure criterion is related to the free energy flow through the interaction arc and the linear size. The proposed approach allows us to reflect the dependence of the critical external load on the radius of curvature. A procedure for determining the value of the linear size is proposed and implemented. Using known experimental results, an estimate of the introduced linear parameter for a layer of GVVS-16 gypsum was obtained.

作者简介

V. Glagolev

Tula State University

编辑信件的主要联系方式.
Email: vadim@tsu.tula.ru
俄罗斯联邦, Tula, 300012

A. Markin

Tula State University

Email: markin-nikram@yandex.ru
俄罗斯联邦, Tula, 300012

参考

  1. N. I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity (Nauka, Moscow, 1966; Noordhoff, Leyden 1975).
  2. C. E. Inglis, “Stresses in a plate due to the presence of cracks and sharp corners,” Trans. Roy. Inst. Naval Archit. 55, 219–230 (1913).
  3. A. G. Ugodchikov, Solution of the Theory of Elasticity Problems by Functions of a Complex Variable Methods (NNGU, N. Novgorod, 2001) [in Russian].
  4. G. Kirsch, “Die Theorie der Elastizitat und Bedurfnisse der Festigkeitslehre,” Z. Ver. Dtsch. Ing. 42, 797–807 (1898).
  5. J. Li and X. B. Zhang, “A criterion study for non-singular stress concentrations in brittle or quasi-brittle materials,” Eng. Fract. Mech. 73 (4), 505–523 (2006). https://doi.org/10.1016/j.engfracmech.2005.09.001
  6. X. B. Zhang and J. Li, “A failure criterion for brittle and quasi-brittle materials under any level of stress concentration,” Eng. Fract. Mech. 78 (17), 4925–4932 (2008). https://doi.org/10.1016/j.engfracmech.2008.06.020
  7. S.V. Suknev, “Application of the finite fracture mechanics approach to assess the failure of a quasi-brittle material with a circular hole,” Mech. Solids 56 (3), 301–311 (2021). https://doi.org/10.3103/S0025654421030110
  8. V. V. Glagolev and A. A. Markin, “Effect of a linear parameter on the brittle fracture of an elastic layer with a circular hole,” J. Appl. Mech. Tech. Phy. 64, 871–877 (2023). https://doi.org/10.1134/S0021894423050164
  9. S. V. Suknev, “Fracture of brittle geomaterial with a circular hole under biaxial loading,” J. Appl. Mech. Tech. Phy. 56, 1078–1083 (2015). https://doi.org/10.1134/S0021894415060188
  10. E.V. Makarov, I. A. Monakhov, and I. V. Nefedova, “Biaxial stretching of the plate a circular hole,” RUDN J. Eng. Res., No. 3, 17–22 (2015).
  11. V. V. Glagolev and A. A. Markin, “Fracture models for solid bodies, based on a linear scale parameter,” Int. J. Solids Struct. 158, 141–149 (2019). http://doi.org/10.1016/j.ijsolstr.2018.09.002

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024