The evolution of regions of reversible and irreversible deformation within a hollow sphere with complex rheological properties under conditions of unsteady heating

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The Ivlev–Sporykhin continuum model, which is a model of a hardening elastoviscoplastic solid, is considered in this study. The model takes into account both reversible and irreversible deformations to investigate evolutionary processes occurring in a hollow sphere under the influence of a time-dependent temperature field. During the solution of this problem, an analytical expression for the temperature distribution within the body was derived. A generalized tree of evolution of regions of elasticity, plastic flow, unloading, and re-plasticity was also constructed. Expressions for the radial components of stress and displacement in these regions were also developed. Four rheological models were compared, taking into account the various properties of the medium.

全文:

受限制的访问

作者简介

D. Chernyshov

Voronezh State University

编辑信件的主要联系方式.
Email: chernyshov.danil@gmail.com
俄罗斯联邦, Voronezh, 394018

А. Kovalev

Voronezh State University

Email: kav-mail@mail.ru
俄罗斯联邦, Voronezh, 394018

参考

  1. Parkus H. Instationäre Wärmespannungen. Vienna: Springer, 1959.
  2. Bershtain M.L., Zaimovskiy V.A. Mechanical Properties of Metals. M.: Metallurgiya, 1979.
  3. Burenin A.A., Tkacheva A.V. Gadolin Problem of Assembling A Prestressed Two-Layer Pipe // J. Appl. Mech. Tech. Phys. 2023. № 5. P. 929–942.
  4. Dats E.P., Murashkin E.V., Bururuev A.M., Nesterov T.K., Stadnik N.E. Calculation of Residual Stresses in The State of Elastic Unloading of a Preheated Inhomogeneous Thermoelastoplastic Material Under Conditions of Toroidal Symmetry //. Estn. Chuvash. Gos. Ped. Univ. Im. Yakovleva Ser. Mekh. Predeln. Sost. 2021. № 1. P. 105–113.
  5. Akinlabi E.T., Dats E.P., Mahamood R.M., Murashkin E.V., Shatalov M.Y. On a Method of Temperature Stresses Computation in a Functionally Graded Elastoplastic Material // Mech. Solids. 2020. № 6. P. 800–807.
  6. Patent No. 2010132900, Int. Cl. E04B 5/21 (2006.01). Steel reinforcement structure of bubbledeck slab elements and procedure of manufacturing bubbledeck slab elements: No. 2010000002: filed 14.05.2010: publicated 18.11.2010 / Duc Thang // WIPO : World Intellectual Property Organization.
  7. URL: https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2010132900
  8. Love A.E.H. A treatise on the mathematical theory of elasticity. Cambridge: University Press, 1927.
  9. Lychev S.A., Lycheva T.N., Koifman K.G. The Nonlinear Evolutionary Problem for Self-Stressed Multilayered Hyperelastic Spherical Bodies // PNRPU Mechanics Bulletin. 2020. № 1. P. 43–59.
  10. Dats E.P. Candidate’s Dissertation in Physics and Mathematica. (KnAGTU, Komsomolsk-na-Amure, 2017), pp. 23–48.
  11. Chernyshov D.A., Kovalev A.V. Thermal Deformation of a Body with Complex Rheology under Conditions of Spherical Symmetry // Mech. Solids. 2022. № 4. P. 740–753.
  12. Kartashov E.M. Analytical Methods in Heat Conductivity of Solids. M.: Vysshaya Shkola, 2001 [in Russian].
  13. Sporykhin A.N. Perturbation Method in Stability Problems for Complex Media. Voronezh: Voronezh. Gos. Univ., 1997 [in Russian].

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Evolution tree of zones with different rheological properties, E – elastic region, P – plastic flow regions, U – unloading zones, R – repeated plastic flow regions.

下载 (870KB)
3. Fig. 2. Location of regions with different rheology and elastic-plastic boundaries in the presence of all seven zones.

下载 (67KB)
4. Fig. 3. Distribution of dimensionless temperature in the body.

下载 (240KB)
5. Fig. 4. Distribution of residual stresses in the body.

下载 (220KB)
6. Fig. 5. Location of elastic-plastic boundaries

下载 (393KB)

版权所有 © Russian Academy of Sciences, 2025