Bending of underwater pipeline during lifting

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The article considers the bending of a long concrete pipeline when its section is raised to the free surface of a reservoir. The initial horizontal position of the pipeline is rectilinear. Its static bending occurs under the action of concentrated forces, the weights of the pipe and the transported medium, and the lifting force of water. The minimum required value of the lifting force and the corresponding length of the raised section of a long pipeline are determined. Taking into account the large ratio of this length to the depth of the reservoir, a linear bending equation is used. An analysis of the bend is given depending on the controlled lifting force and the controlled rise of the pipeline.

Texto integral

Acesso é fechado

Sobre autores

M. Ilgamov

A.A. Blagonravov Institute of Mechanical Engineering of the RAS; Institute of Mechanics and Mechanical Engineering of the Kazan Scientific Center of the RAS; Mavlyutov Institute of Mechanics of the Ufa Federal Research Center of the RAS

Autor responsável pela correspondência
Email: ilgamov@anrb.ru
Rússia, Moscow; Kazan; Ufa

Bibliografia

  1. Levin S.M. Underwater pipelines. M.: Nedra. 1970. 280 p. [in Russian].
  2. Palmer A.C., King R.A. Subsea Pipeline Engineering. Oklahoma: PWC. 2004. 570 p.
  3. Ainbinder A.B. Calculation of main and field pipelines for strength and stability: Reference manual. M.: Nedra. 1991. 287 p. [in Russian].
  4. Pedersen R.T. Equilibrium of offshore cables and pipelines during laying // Int. Shipbuild Prog. 1975. V. 22. P. 399–408. https://doi.org/10.3233/ISP-1975-2225601
  5. Guarracino F., Mallardo V. A refined analytical analysis of submerged pipelines in seabed laying. Appl. Ocean Res. 1999. 21. P. 281–293. https://doi.org/10.1016/S0141-1187(99)00020-6
  6. Ilgamov M.A., Ratrout R.A. Large deflection of superconducting cable // International Journal of Non-Linear Mechanics. 1999. 34. P. 869-880. https://doi.org/10.1016/S0020-7462(98)00059-6
  7. Ilgamov M.A., Yakubov R.G. Strong bending of a pipeline // Izvestiya RAS. Mechanics of Solids. 2003. № 6. P. 109–116 [in Russian].
  8. Peek R., Yun H. Flotation to trigger lateral buckles in pipelines on a flat seabed // Journal of Engineering Mechanics. 2007. V. 4. P. 442–451. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:4(442)
  9. Eliseev V.V., Zinovieva T.V. Nonlinear elastic deformation of an underwater pipeline during laying // Computational Continuous Media Mechanics. 2012. № 1. P. 70–78. https://doi.org/10.7242/1999-6691/2012.5.1.9 [in Russian].
  10. Wang Z., Tang Y. Study on symmetric buckling mode triggered by dual distributed buoyancy sections for subsea pipelines // Ocean Engineering. 2020. V. 216. P. 105–110. https://doi.org/10.1016/j.oceaneng.2020.108019
  11. Chee J., Walker A., White D. Controlling lateral buckling of subsea pipeline with sinusoidal shape pre-deformation // Ocean Engineering. 2018. V. 151. P. 170–190. https://doi.org/10.1016/j.oceaneng.2018.01.024
  12. Liang Y., Zhao Y., Yue Q.J. Experimental study on dynamic interaction between pipe and rollers in deep S-lay. Ocean Engineering. 2019. 175. P. 188–196. https://doi.org/10.1016/j.oceaneng.2019.01.030
  13. Wang Z., Tang Y., Guedes S.C. Imperfection study on lateral thermal buckling of subsea pipeline triggered by a distributed buoyancy sections // Marine Structures. 2021. V. 76. P. 10–29. https://doi.org/10.1016/j.marstruc. 2020.10291
  14. Zhao J.H., Liao K.X., Li X.X., He G.X., Xia F., Zeng Q. Collaborative detection and on-line monitoring of pipeline stress in oil and gas stations // Meas. Sci. Technol. 2022. V. 33. P. 105001. https://doi.org/10.1088/1361-6501/ac73dc
  15. Zaripov R.M., Masalimov R.B. Numerical modeling of the stress-strain state of an underwater gas pipeline taking into account soil liquefaction and operating parameters // Izvestiya RAS. Mechanics of Solids. 2023. № 4. P. 152–166 [in Russian]. https://doi.org/10.31857/S0572329922600700
  16. Zaripov R.M., Masalimov R.B. Use of compensators in the underwater section of the offshore gas pipeline to prevent its surfacing // Bulletin of Tomsk Polytechnic University. Georesources engineering. 2023. V. 334. № 2. P. 196–205 [in Russian]. https://doi.org/10.18799/24131830/2023/2/3761
  17. Utyashev I.M., Shakiryanov M.M. Spatial vibrations of a pipeline with vibrating supports // Izvestiya RAS. Mechanics of Solids. 2023. № 4. P. 38–52 [in Russian]. https://doi.org/10.31857/S057232992260058X
  18. Gu H.L., Guo H.Y., Li X.M., Li F.H. Static behaviours and collision onset criterion of two adjacent vertical risers // Ships Offshore Struct. 2023. V. 18. P. 263–271. https://doi.org/10.1080/17445302.2022.2035569
  19. Li S. J., Karney B.W., Liu G. FSI research in pipeline systems – A review of the literature // Journal of Fluids and Structures. 2015. V. 57. P. 277–297. https://doi.org/10.1016/j.jfluidstructs.2015.06.020
  20. Ilgamov M.A. Subsea Gas Pipeline Floatation // Mechanics of Solids. 2023. V. 58. № 2. P. 119–128 [in Russian]. https://doi.org/10.3103/S0025654422600842
  21. Wang Z., Chen Y., Gao Q., Li F. An analytical method for mechanical analysis of offshore pipelines during lifting operation // Materials. 2023. V. 16. № 20. P. 6685. https://doi.org/10.3390/mal16206685
  22. Ilgamov M.A. Lifting an underwater pipeline by concentrated force // DAN. Physics, Engineering Sciences. 2024. V. 514. P. 156–161 [in Russian]. https://doi.org/10.31857/S2686740024040108
  23. Timoshenko S.P. Strength of Materials. Part 1. Melbourne: KPC. 1976. 456 p.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Scheme of lifting a long pipeline by concentrated forces.

Baixar (59KB)
3. Fig. 2. Dependence of the length of the lifted section L (m) of a long pipeline on the concentrated forces P1 (МН) for different ratios α between them and distances l (m). In (3.6) it is assumed that q = 500 kg/s2.

Baixar (204KB)
4. Fig. 3. Dependence of the lifting height W1 (m) of a point x = 0 on the lifting forces P1 (МН) and P2 = αP1 for different ratios α between them and distances l (m). In (4.3) it is assumed that D = 2 × 10 kg ⋅ m2/s2.

Baixar (166KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025