Relationship between the results of analytical solutions of elasticity theory problems and of stress state optimization in the vicinity of singular points

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The paper presents the results of two directions of the study of the stress-strain state in the vicinity of singular points of elastic bodies, namely: change of the type of boundary conditions; edges of the contact surface of different materials. The result of the first direction is the solution of elasticity theory problems in the vicinity of singular points, from which the possibility of infinite stresses at these points follows. The second direction is associated with the analysis by numerical and experimental methods of the stress state in the vicinity of singular points, which, as a rule, occur when modeling real objects and are potential stress concentration zones. The main content of the article is to establish, based on a comparison of the results of the two directions, the relationship between variants with a minimum stress level in the vicinity of singular points with the results on the nature of the stress singularity at these points.

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Fedorov

Institute of Continuous Media Mechanics UB RAS

Хат алмасуға жауапты Автор.
Email: fedorov@icmm.ru
Ресей, Perm

V. Matveenko

Institute of Continuous Media Mechanics UB RAS

Email: mvp@icmm.ru
Ресей, Perm

Әдебиет тізімі

  1. Kondrat’ev V. Boundary value problems for elliptic equations in domains with conical or angular points // Trans. Mosc. Math. Soc., 1967. Vol. 16. P. 227–313. http://mi.mathnet.ru/eng/mmo186
  2. Sinclair G.B. Stress singularities in classical elasticity – I: Removal, interpretation, and analysis // Appl. Mech. Rev. 2004. V. 57. № 4. P. 251–297. https://doi.org/10.1115/1.1762503
  3. Sinclair G.B. Stress singularities in classical elasticity – II: Asymptotic identification // Appl. Mech. Rev. 2004. V. 57. № 5. P. 385–439. https://doi.org/10.1115/1.1767846
  4. Paggi M., Carpinteri A. On the stress singularities at multimaterial interfaces and related analogies with fluid dynamics and diffusion // Appl. Mech. Rev. 2008. V. 61. № 2. 020801. https://doi.org/10.1115/1.2885134
  5. Carpinteri A., Paggi M. Asymptotic analysis in linear elasticity: from the pioneering studies by Wieghardt and Irwin until today // Eng. Fract. Mech. 2009. V. 76. № 12. P. 1771–1784. https://doi.org/10.1016/j.engfracmech.2009.03.012
  6. Pook L.P. A 50-year retrospective review of three-dimensional effects at cracks and sharp notches // Fatigue Fract. Eng. Mater. Struct. 2013. V. 36. № 8. P. 699–723. https://doi.org/10.1111/ffe.12074
  7. Koltunov M.A., Kuznetcov G.B., Matveenko V.P., Troianovskii I.E., Shardakov I.N. Optimization of axisymmetric body geometry in the presence of change of type of boundary conditions at the corner point // Pricladnye problemy prochnosti i plastichnosti. Gor`kii, 1978. № 9. P. 55-60.
  8. Borzenkov S., Matveenko V. Optimization of elastic bodies in the vicinity of singular points // Izv. RAN. Mekhanika Tverdogo Tela, 1996. № 2. P. 93–100.
  9. Matveyenko V.P., Borzenkov S.M. Semianalytical singular element and its application to stress calculation and optimization // Int. J. Numer. Meth. Eng. 1996. V. 39. № 10. P. 1659–1680. https://doi.org/10.1002/(SICI)1097-0207(19960530)39:10%3C1659::AID-NME919%3E3.0.CO;2-W
  10. Timoshenko S.P., Goodier J.N. Theory of Elasticity. 3rd edition, N.Y.: McGraw-Hill, 1970. 608 p.
  11. Kovrov V.N., Zolotukhin V.G. Experimental studies on the adhesion strength of a polymer-metal bond depending on the contact zone geometry // Mechanics of Composite Materials. 1999. V. 35. № 4. P. 335–338. https://doi.org/10.1007/BF02259722
  12. Dempsey J.P. Sinclair G.B. On the singular behavior at the vertex of a bi-material wedge // J. Elasticity. 1981. V. 11. P. 317–327. https://doi.org/10.1007/BF00041942
  13. Chobanyan K. Stress State in Compound Elastic Bodies. Yerevan: Armenian Academy of Sciences Press, 1987. 338 p.
  14. Wu Z. Design free of stress singularities for bi-material components // Compos. Struct. 2004. V. 65. № 3–4. P. 339–345. https://doi.org/10.1016/j.compstruct.2003.11.009
  15. Xu L.R., Kuai H., Sengupta S. Dissimilar material joints with and without free-edge stress singularities: Part I. A biologically inspired design // Exp. Mech. 2004. V. 44. P. 608–615. https://doi.org/10.1007/BF02428250
  16. Xu L.R., Sengupta S. Dissimilar material joints with and without free-edge stress singularities: Part II. An integrated numerical analysis // Exp. Mech. 2004. V. 44. P. 616–621. https://doi.org/10.1007/BF02428251
  17. Wang P., Xu L.R. Convex interfacial joints with least stress singularities in dissimilar materials // Mech. Mater. 2006. V. 38. № 11. P. 1001–1011. https://doi.org/10.1016/j.mechmat.2005.10.002
  18. Baladi A., Arezoodar A.F. Dissimilar materials joint and effect of angle junction on stress distribution at interface // Int. J. Mech. Aero.Indust. Mechatron. Manufacturing Eng. 2011. V. 5. № 7. P. 1184–1187.
  19. Park J., Anderson W.J. Geometric optimization of two bonded wedges involving stress singularities // Compos. Eng. 1994. V. 4. № 9. P. 901–912. https://doi.org/10.1016/0961-9526(94)90034-5
  20. Fedorov A.Y., Matveenko V.P. Optimization of geometry and mechanical characteristics of elastic bodies in the vicinity of singular points // Acta Mechanica. 2018. V. 229. P. 645–658. https://doi.org/10.1007/s00707-017-1990-5
  21. Wetherhold R.C., Dargush G.F. Improvement of adhesive strength at a bi-material interface by adjusting the interface angles at the free edge // Theor. Appl. Fract. Mech. 2015. V. 77. P. 69–73. https://doi.org/10.1016/j.tafmec.2015.02.002
  22. Velde B. Structure of surface cracks in soil and muds // Geoderma. 1999. V. 93. № 1–2. P. 101–124. https://doi.org/10.1016/S0016-7061(99)00047-6
  23. Tang C., Shi B., Liu C., Zhao L., Wang B. Influencing factors of geometrical structure of surface shrinkage cracks in clayey soils // Eng. Geol. 2008. V. 101. № 3–4. P. 204–217. https://doi.org/10.1016/j.enggeo.2008.05.005
  24. Shorlin K.A., de Bruyn J.R., Graham M., Morris S.W. Development and geometry of isotropic and directional shrinkage-crack patterns // Phys. Rev. E. 2000. V. 61. № 6. P. 6950–6957. https://doi.org/10.1103/PhysRevE.61.6950
  25. Vogel H.-J., Hoffmann H., Roth K. Studies of crack dynamics in clay soil: I. Experimental methods, results, and morphological quantification // Geoderma. 2005. V. 125. № 3–4, P. 203–211. https://doi.org/10.1016/j.geoderma.2004.07.009
  26. Le Roux S., Medjedoub F., Dour G., Rézaï-Aria F. Image analysis of microscopic crack patterns applied to thermal fatigue heat-checking of high temperature tool steels // Micron. 2013. V. 44. P. 347–358. https://doi.org/10.1016/j.micron.2012.08.007
  27. Korneta W., Mendiratta S.K., Menteiro J. Topological and geometrical properties of crack patterns produced by the thermal shock in ceramics // Phys. Rev. E. 1998. V. 57. № 3. P. 3142–3152. https://doi.org/10.1103/PhysRevE.57.3142
  28. Scott G.J.T., Webster R., Nortcliff S. An analysis of crack pattern in clay soil: its density and orientation // J. Soil Sci. 1986. V. 37. № 4. P. 653–668. https://doi.org/10.1111/j.1365-2389.1986.tb00394.x
  29. Montigny A., Walwer D., Michaut C. The origin of hierarchical cracks in floor-fractured craters on Mars and the Moon // Earth Planet. Sci. Lett. 2022. V. 600. 117887. https://doi.org/10.1016/j.epsl.2022.117887
  30. https://www.europlanet-society.org/patterns-in-mars-crater-floors-give-picture-of-drying-lakes-epsc0905/ (Дата обращения 18.07.2024)
  31. Fedorov A.Yu., Galkina E.B. Comparison of general regularities inherent to structures of surface cracks and stresses near the tips of spatial cracks // Computational Continuum Mechanics. 2023. V. 16. № 3. P. 375–386. https://doi.org/10.7242/1999-6691/2023.16.3.32

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Calculation diagrams for cylinders under mass forces (a) and tensile forces (b).

Жүктеу (134KB)
3. Fig. 2. Uniform (a) and composite (b) plane wedges in polar coordinates.

Жүктеу (49KB)
4. Fig. 3. Solution regions with and without stress singularity (angle  in degrees).

Жүктеу (41KB)
5. Fig. 4. Test scheme: 1 - steel fungus, 2 - specimen, 3 - bottom grip (a); dependence of the joint strength  (in MPa) on the joint angle  (in degrees) under normal detachment (1) and under cantilever bending (2) (b).

Жүктеу (98KB)
6. Fig. 5. Calculation diagram of a two-layer hollow cylinder.

Жүктеу (89KB)
7. Fig. 6. Connection of two trapezoidal plates.

Жүктеу (28KB)
8. Fig. 7. Computational scheme for a compound cylinder (a); curve separating solutions with and without singularity in the plane of parameters 1 and 2 (for 1 = 2 = 0.3, E2/E1 = 10) (b).

Жүктеу (107KB)
9. Fig. 8. Geometries of the samples.

Жүктеу (111KB)
10. Fig. 9. Photographs of surface cracks: cracked earth at Rann of Kutch (India) (a); dried aqueous solution of cornstarch [29] (b); surface of dried salt marsh (Sicily) (c); cracks at the bottom of an impact crater on Mars [30] (d); old ceramic surface (e); surface of a heat-resistant steel specimen after thermal fatigue test [26] (f).

Жүктеу (979KB)
11. Fig. 10. Calculation scheme of intersection of two (a), three (b) and four (c) wedge cracks.

Жүктеу (116KB)

© Russian Academy of Sciences, 2024