Investigation of interlayer bond strength in concrete 3D printing technology

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The advancement of concrete 3D printing in construction necessitates a thorough study of factors affecting interlayer adhesion, as it directly impacts the strength and durability of printed structures. The lack of sufficient data on the influence of mixture workability, aggregate type and ratio, and curing time limits the optimization of process parameters. Addressing these gaps will improve the quality of 3D-printed structures, expand their applications, and reduce defect risks. This study is crucial for the further development of additive manufacturing in construction, providing a scientific basis for refining printing methods. The aim of this work is to investigate the effects of fine-grained concrete mixture workability, sand fineness modulus, process interruption time, and curing duration on interlayer adhesion in additive construction. The results reveal key dependencies of interlayer bond strength on mix design and process factors: workability, sand fineness modulus, and curing duration under varying process interruptions. Optimal parameters for maximum interlayer bond strength in 3D-printed structures include a workability grade of Pk=3 and a sand fineness modulus of Mk=3. The observed effects are primarily attributed to chemical, diffusion, and adsorption adhesion mechanisms, with mechanical interlocking playing a secondary role. The findings indicate that the key approach to enhancing interlayer adhesion in additive construction lies in optimizing mixture composition, which governs hydration kinetics and material structure formation.

Texto integral

Acesso é fechado

Sobre autores

R. Mukhametrakhimov

Kazan State University of Architecture and Engineering

Autor responsável pela correspondência
Email: muhametrahimov@mail.ru

Doctor of Sciences (Engeneering)

Rússia, 1, Zelenaya, Kazan, 420043

R. Rakhimov

Kazan State University of Architecture and Engineering

Email: rahimov@kgasu.ru

Doctor of Sciences (Engeneering) 

Rússia, 1, Zelenaya, Kazan, 420043

A. Buryanov

National Research Moscow State University of Civil Engineering

Email: rga-service@mail.ru

Doctor of Sciences (Engeneering) 

Rússia, 26, Yaroslavskoe Highway, Moscow, 129337

L. Ziganshina

Kazan State University of Architecture and Engineering

Email: lilya0503199@gmail.com

Candidate of Sciences (Engineering) 

Rússia, 1, Zelenaya, Kazan, 420043

Bibliografia

  1. Tay Y.W.D., Panda B., Paul S.C., Noor Mohamed N.A., Tan M.J., Leong K.F. 3D printing trends in building and construction industry: a re-view. Virtual and Physical Prototyping. 2017. Vol. 12. No. 3, pp. 261–276. https://doi.org/10.1080/17452759.2017.1326724
  2. Asghari Y., Mohammadyan-Yasouj S.E., Petrů M., Ghandvar H.R. Koloor S.S. 3D Printing and Implementation of Engineered Cementitious Composites – A Review. Case Studies in Construction Materials. 2024. Vol. 21, р. e03462. EDN: FHWTZQ. https://doi.org/10.1016/J.CSCM.2024.E03462
  3. Ngo T.D., Kashani A., Imbalzano G., Nguyen K.T.Q., Hui D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering. 2018. Vol. 143, pp. 172–196. EDN: YEXMXZ. https://doi.org/10.1016/J.COMPOSITESB.2018.02.012
  4. Paolini A., Kollmannsberger S., Rank E. Additive manufacturing in construction: A review on processes, applications, and digital planning methods. Additive Manufacturing. 2019. Vol. 30. https://doi.org/10.1016/J.ADDMA.2019.100894
  5. Buswell R.A., Leal de Silva W.R., Jones S.Z., Dirrenberger J. 3D printing using concrete extrusion: A roadmap for research. Cement and Concrete Research. 2018. Vol. 112, pp. 37–49. https://doi.org/10.1016/j.cemconres.2018.05.006
  6. Rahimov R.Z., Muhametrahimov R.H., Rahmatullina E.S. Technical and economic efficiency of additive construction production of small concrete forms. Ekspert: Тeoriya i Praktika. 2024. No. 1 (24), pp. 34–41. (In Russian). EDN: MUBDPY. https://doi.org/10.51608/26867818_2024_1_34
  7. Wolfs R.J.M., Bos F.P., Salet T.A.M. Hardened properties of 3D printed concrete: The influence of process parameters on interlayer adhesion. Cement and Concrete Research. 2019. Vol. 119, pp. 132–140. https://doi.org/10.1016/j.cemconres.2019.02.017
  8. Weng Y., Li M., Zhang D., Tan M.J., Qian S. Investigation of inter-layer adhesion of 3D printable cementitious material from the aspect of printing process. Cement and Concrete Research. 2021. Vol. 143, p. 106386. EDN: VPEHRB. https://doi.org/10.1016/J.CEMCONRES.2021.106386
  9. Chen Y., Chaves Figueiredo S., Yalçinkaya Ç., Çopuroğlu O., Veer F., Schlangen E. The Effect of Viscosity-Modifying Admixture on the Extrudability of Limestone and Calcined Clay-Based Cementitious Material for Extrusion-Based 3D Concrete Printing. Materials. 2019. Vol. 12, No. 9, p. 1374. https://doi.org/10.3390/ma12091374
  10. Mousavi M., Bengar H.A., Mousavi F., Mahdavinia P., Bengar M.A. Interlayer bond strength prediction of 3D printable concrete using artificial neural network: Experimental and modeling study. Structures. 2025. Vol. 71, p. 108147. EDN: KQMPTN. https://doi.org/10.1016/J.ISTRUC.2024.108147
  11. Muhametrahimov R.H., Galautdinov A.R., Ziganshina L.V. Improving additive manufacturing by increasing layer adhesion during long breaks in the 3D printing process. Izvestiya of the KSACU. 2024. No. 1 (67), pp. 127–134. (In Russian). EDN: ULXEQB. https://doi.org/10.48612/NewsKSUAE/67.13
  12. Rahul A.V., Santhanam M., Meena H., Ghani Z. 3D printable concrete: Mixture design and test methods. Cement and Concrete Composites. 2019. Vol. 97, pp. 13–23. https://doi.org/10.1016/J.CEMCONCOMP.2018.12.014
  13. Xu W., Jiang D., Zhao Q., Wang L. Wang. Study on printability of 3D print-ing carbon fiber reinforced eco-friendly concrete: Characterized by fluidity and consistency. Case Studies in Construction Materials. 2024. Vol. 21, p. e03589. https://doi.org/10.1016/J.CSCM.2024.E03589
  14. He Y., Zhang X., Hooton R.D., Zhang X. Effects of interface rough-ness and interface adhesion on new-to-old concrete bonding. Construction and Building Materials. 2017. Vol. 151, pp. 582–590. https://doi.org/10.1016/J.CONBUILDMAT.2017.05.049
  15. Tao Y., Lesage K., Van Tittelboom K., Yuan Y., De Schutter G. Influ-ence of substrate surface roughness and moisture content on tensile adhesion performance of 3D printable concrete. Cement and Concrete Composites. 2022. Vol. 126, p. 104350. EDN: UEUGZV. https://doi.org/10.1016/J.CEMCONCOMP.2021.104350
  16. He L., Pan J., Hee Y.S. Development of novel concave and convex trowels for higher interlayer strength of 3D printed cement paste. Case Studies in Construction Materials. 2024. Vol. 21, p. e03745. https://doi.org/10.1016/J.CSCM.2024.E03745
  17. Belyakov A.YU., Hohryakov O.V., Hozin V.G. Functionalized mineral filler – an effective modifier of cement concrete. Izvestiya of the KSACU. 2023. No. 3 (64), pp. 45–56. (In Russian). EDN: FCPOKY. https://doi.org/10.52409/20731523_2023_3_45
  18. Gizzatullin A.R., Morozova N.N., Nesterova K.O. Functionalized fillers for use in cement concretes. Polimery v Stroitel’stve. 2023. No. 1 (11), pp. 47–57. (In Russian). EDN: CBGPNV
  19. Al’tdinova A.I., Hamidullina N.R., Kuznecova G.V. Influence of sand type on durability and properties of autoclaved silicate products. Polimery v Stroitel’stve. 2023. No. 1 (11), pp. 30–39. (In Russian). EDN: JEDODO
  20. Kosareva A.V., Savickaya Yu.A., Harlamova K.I. Evaluation of the efficiency of methods for fractionation of dispersed microparticles. Polimery v Stroitel’stve. 2024. No. 1 (12), pp. 100–103. (In Russian). EDN: AENNLJ
  21. Kajs H.A., Morozova N.N., Hohryakov O.V., Nizamov R.K. Strength and deformation properties of fine-grained concrete based on gypsum-cement-pozzolanic binder. Izvestiya of the KSACU. 2025. No. 1 (71), pp. 51–66. (In Russian). EDN: EANJZS. https://doi.org/10.48612/NewsKSUAE/71.5
  22. Slavcheva G.S., Razov I.O., Solonina V.A., Panchenko Y.F. Justification of the criteria requirements for fillers in mixtures for 3D construction printing. Nanotechnologies in Construction A Scientific. 2023. Vol. 15. No. 4, pp. 310–318. EDN: MDJZIG. https://doi.org/10.15828/2075-8545-2023-15-4-310-318
  23. Slavcheva G.S., Britvina E.A., Shvedova M.A., Yurov P.Yu. The influence of dosage and granulometry of fillers on the extrudability of mixtures for 3D printing. Stroitel’nye Materialy [Construction Materials]. 2022. No. 1–2, pp. 21–29. (In Russian). EDN: IRXARN. https://doi.org/10.31659/0585-430X-2022-799-1-2-21-29

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. 3D printed concrete with distinctive boundaries between layers

Baixar (415KB)
3. Fig. 2. Dependence of the strength of adhesion layers printed with technological breaks of 0, 6, 9, 12 h, on the mobility of fine-grained concrete mixture

Baixar (120KB)
4. Fig. 3. Dependences of the adhesion strength of layers printed with technological breaks of 0, 6, 9, 12 h on the fineness modulus of sand in the composition of fine-grained concrete mixture

Baixar (120KB)
5. Fig. 4. Dependence of the adhesion strength of fine-grained concrete layers on the hardening duration, printed with different durations of the technological break

Baixar (86KB)

Declaração de direitos autorais © ООО РИФ "СТРОЙМАТЕРИАЛЫ", 2025