Investigation of interlayer bond strength in concrete 3D printing technology
- Autores: Mukhametrakhimov R.K.1, Rakhimov R.Z.1, Buryanov A.F.2, Ziganshina L.V.1
-
Afiliações:
- Kazan State University of Architecture and Engineering
- National Research Moscow State University of Civil Engineering
- Edição: Nº 7 (2025)
- Páginas: 32-37
- Seção: Статьи
- URL: https://transsyst.ru/0585-430X/article/view/688694
- DOI: https://doi.org/10.31659/0585-430X-2025-837-7-32-37
- ID: 688694
Citar
Texto integral



Resumo
The advancement of concrete 3D printing in construction necessitates a thorough study of factors affecting interlayer adhesion, as it directly impacts the strength and durability of printed structures. The lack of sufficient data on the influence of mixture workability, aggregate type and ratio, and curing time limits the optimization of process parameters. Addressing these gaps will improve the quality of 3D-printed structures, expand their applications, and reduce defect risks. This study is crucial for the further development of additive manufacturing in construction, providing a scientific basis for refining printing methods. The aim of this work is to investigate the effects of fine-grained concrete mixture workability, sand fineness modulus, process interruption time, and curing duration on interlayer adhesion in additive construction. The results reveal key dependencies of interlayer bond strength on mix design and process factors: workability, sand fineness modulus, and curing duration under varying process interruptions. Optimal parameters for maximum interlayer bond strength in 3D-printed structures include a workability grade of Pk=3 and a sand fineness modulus of Mk=3. The observed effects are primarily attributed to chemical, diffusion, and adsorption adhesion mechanisms, with mechanical interlocking playing a secondary role. The findings indicate that the key approach to enhancing interlayer adhesion in additive construction lies in optimizing mixture composition, which governs hydration kinetics and material structure formation.
Palavras-chave
Texto integral

Sobre autores
R. Mukhametrakhimov
Kazan State University of Architecture and Engineering
Autor responsável pela correspondência
Email: muhametrahimov@mail.ru
Doctor of Sciences (Engeneering)
Rússia, 1, Zelenaya, Kazan, 420043R. Rakhimov
Kazan State University of Architecture and Engineering
Email: rahimov@kgasu.ru
Doctor of Sciences (Engeneering)
Rússia, 1, Zelenaya, Kazan, 420043A. Buryanov
National Research Moscow State University of Civil Engineering
Email: rga-service@mail.ru
Doctor of Sciences (Engeneering)
Rússia, 26, Yaroslavskoe Highway, Moscow, 129337L. Ziganshina
Kazan State University of Architecture and Engineering
Email: lilya0503199@gmail.com
Candidate of Sciences (Engineering)
Rússia, 1, Zelenaya, Kazan, 420043Bibliografia
- Tay Y.W.D., Panda B., Paul S.C., Noor Mohamed N.A., Tan M.J., Leong K.F. 3D printing trends in building and construction industry: a re-view. Virtual and Physical Prototyping. 2017. Vol. 12. No. 3, pp. 261–276. https://doi.org/10.1080/17452759.2017.1326724
- Asghari Y., Mohammadyan-Yasouj S.E., Petrů M., Ghandvar H.R. Koloor S.S. 3D Printing and Implementation of Engineered Cementitious Composites – A Review. Case Studies in Construction Materials. 2024. Vol. 21, р. e03462. EDN: FHWTZQ. https://doi.org/10.1016/J.CSCM.2024.E03462
- Ngo T.D., Kashani A., Imbalzano G., Nguyen K.T.Q., Hui D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering. 2018. Vol. 143, pp. 172–196. EDN: YEXMXZ. https://doi.org/10.1016/J.COMPOSITESB.2018.02.012
- Paolini A., Kollmannsberger S., Rank E. Additive manufacturing in construction: A review on processes, applications, and digital planning methods. Additive Manufacturing. 2019. Vol. 30. https://doi.org/10.1016/J.ADDMA.2019.100894
- Buswell R.A., Leal de Silva W.R., Jones S.Z., Dirrenberger J. 3D printing using concrete extrusion: A roadmap for research. Cement and Concrete Research. 2018. Vol. 112, pp. 37–49. https://doi.org/10.1016/j.cemconres.2018.05.006
- Rahimov R.Z., Muhametrahimov R.H., Rahmatullina E.S. Technical and economic efficiency of additive construction production of small concrete forms. Ekspert: Тeoriya i Praktika. 2024. No. 1 (24), pp. 34–41. (In Russian). EDN: MUBDPY. https://doi.org/10.51608/26867818_2024_1_34
- Wolfs R.J.M., Bos F.P., Salet T.A.M. Hardened properties of 3D printed concrete: The influence of process parameters on interlayer adhesion. Cement and Concrete Research. 2019. Vol. 119, pp. 132–140. https://doi.org/10.1016/j.cemconres.2019.02.017
- Weng Y., Li M., Zhang D., Tan M.J., Qian S. Investigation of inter-layer adhesion of 3D printable cementitious material from the aspect of printing process. Cement and Concrete Research. 2021. Vol. 143, p. 106386. EDN: VPEHRB. https://doi.org/10.1016/J.CEMCONRES.2021.106386
- Chen Y., Chaves Figueiredo S., Yalçinkaya Ç., Çopuroğlu O., Veer F., Schlangen E. The Effect of Viscosity-Modifying Admixture on the Extrudability of Limestone and Calcined Clay-Based Cementitious Material for Extrusion-Based 3D Concrete Printing. Materials. 2019. Vol. 12, No. 9, p. 1374. https://doi.org/10.3390/ma12091374
- Mousavi M., Bengar H.A., Mousavi F., Mahdavinia P., Bengar M.A. Interlayer bond strength prediction of 3D printable concrete using artificial neural network: Experimental and modeling study. Structures. 2025. Vol. 71, p. 108147. EDN: KQMPTN. https://doi.org/10.1016/J.ISTRUC.2024.108147
- Muhametrahimov R.H., Galautdinov A.R., Ziganshina L.V. Improving additive manufacturing by increasing layer adhesion during long breaks in the 3D printing process. Izvestiya of the KSACU. 2024. No. 1 (67), pp. 127–134. (In Russian). EDN: ULXEQB. https://doi.org/10.48612/NewsKSUAE/67.13
- Rahul A.V., Santhanam M., Meena H., Ghani Z. 3D printable concrete: Mixture design and test methods. Cement and Concrete Composites. 2019. Vol. 97, pp. 13–23. https://doi.org/10.1016/J.CEMCONCOMP.2018.12.014
- Xu W., Jiang D., Zhao Q., Wang L. Wang. Study on printability of 3D print-ing carbon fiber reinforced eco-friendly concrete: Characterized by fluidity and consistency. Case Studies in Construction Materials. 2024. Vol. 21, p. e03589. https://doi.org/10.1016/J.CSCM.2024.E03589
- He Y., Zhang X., Hooton R.D., Zhang X. Effects of interface rough-ness and interface adhesion on new-to-old concrete bonding. Construction and Building Materials. 2017. Vol. 151, pp. 582–590. https://doi.org/10.1016/J.CONBUILDMAT.2017.05.049
- Tao Y., Lesage K., Van Tittelboom K., Yuan Y., De Schutter G. Influ-ence of substrate surface roughness and moisture content on tensile adhesion performance of 3D printable concrete. Cement and Concrete Composites. 2022. Vol. 126, p. 104350. EDN: UEUGZV. https://doi.org/10.1016/J.CEMCONCOMP.2021.104350
- He L., Pan J., Hee Y.S. Development of novel concave and convex trowels for higher interlayer strength of 3D printed cement paste. Case Studies in Construction Materials. 2024. Vol. 21, p. e03745. https://doi.org/10.1016/J.CSCM.2024.E03745
- Belyakov A.YU., Hohryakov O.V., Hozin V.G. Functionalized mineral filler – an effective modifier of cement concrete. Izvestiya of the KSACU. 2023. No. 3 (64), pp. 45–56. (In Russian). EDN: FCPOKY. https://doi.org/10.52409/20731523_2023_3_45
- Gizzatullin A.R., Morozova N.N., Nesterova K.O. Functionalized fillers for use in cement concretes. Polimery v Stroitel’stve. 2023. No. 1 (11), pp. 47–57. (In Russian). EDN: CBGPNV
- Al’tdinova A.I., Hamidullina N.R., Kuznecova G.V. Influence of sand type on durability and properties of autoclaved silicate products. Polimery v Stroitel’stve. 2023. No. 1 (11), pp. 30–39. (In Russian). EDN: JEDODO
- Kosareva A.V., Savickaya Yu.A., Harlamova K.I. Evaluation of the efficiency of methods for fractionation of dispersed microparticles. Polimery v Stroitel’stve. 2024. No. 1 (12), pp. 100–103. (In Russian). EDN: AENNLJ
- Kajs H.A., Morozova N.N., Hohryakov O.V., Nizamov R.K. Strength and deformation properties of fine-grained concrete based on gypsum-cement-pozzolanic binder. Izvestiya of the KSACU. 2025. No. 1 (71), pp. 51–66. (In Russian). EDN: EANJZS. https://doi.org/10.48612/NewsKSUAE/71.5
- Slavcheva G.S., Razov I.O., Solonina V.A., Panchenko Y.F. Justification of the criteria requirements for fillers in mixtures for 3D construction printing. Nanotechnologies in Construction A Scientific. 2023. Vol. 15. No. 4, pp. 310–318. EDN: MDJZIG. https://doi.org/10.15828/2075-8545-2023-15-4-310-318
- Slavcheva G.S., Britvina E.A., Shvedova M.A., Yurov P.Yu. The influence of dosage and granulometry of fillers on the extrudability of mixtures for 3D printing. Stroitel’nye Materialy [Construction Materials]. 2022. No. 1–2, pp. 21–29. (In Russian). EDN: IRXARN. https://doi.org/10.31659/0585-430X-2022-799-1-2-21-29
Arquivos suplementares
