Дезорганизация рибосом и другие эффекты искусственной РНКазы DL412 в клетках Salmonella enterica
- Авторы: Григорьева А.Е.1, Тупицына А.В.1, Рябова Е.С.1, Бардашева А.В.1, Задворных Д.А.1, Королева Л.С.1, Сильников В.Н.1, Рябчикова Е.И.1
-
Учреждения:
- Институт химической биологии и фундаментальной медицины СО РАН
- Выпуск: Том 61, № 2 (2025)
- Страницы: 128-138
- Раздел: Статьи
- URL: https://transsyst.ru/0555-1099/article/view/687473
- DOI: https://doi.org/10.31857/S0555109925020025
- EDN: https://elibrary.ru/ENLWCL
- ID: 687473
Цитировать
Аннотация
Синтезирован катионный амфифил DL412, обладающий рибонуклеазной активностью (D — DABCO (1,4-диазабицикло[2.2.2]октан); L4 — тетраметиленовый линкер; 12 — додецильный остаток) и выраженными антибактериальными свойствами. Суспензию клеток Salmonella enterica ATCC 14028 инкубировали в 5 мкМ растворе DL412 в течение 15 и 30 мин или 5 мкМ растворе ципрофлоксацина (препарат сравнения), интактные клетки служили контролем. Образцы фиксировали 4%-ным формальдегидом и 1%-ным OsO4 или по методу Райтера-Келленбергера 1%-ным OsO4 с постфиксацией 0.5%-ным ацетатом уранила, после чего обезвоживали и заключали в смесь эпоксидных смол. Полученные ультратонкие срезы изучали в электронном микроскопе Jem 1400. После 15 мин инкубации с соединением DL412 в клетках S. enterica исчезли видимые рибосомы по всей площади цитоплазмы. В периплазматическом пространстве появилось гомогенное вещество средней электронной плотности, способное проникать в цитоплазму, в которой появлялись полиморфные включения. Выраженные изменения ультраструктуры наблюдались в нуклеоидах бактерии: они округлялись, нити ДНК “слипались” в пучки. При этом структура внешней мембраны не изменялась. Выявленные изменения структуры S. enterica не различались при разных способах фиксации и были обусловлены сочетанием рибонуклеазной активности и амфифильных свойств DL412. Такие изменения не описаны в научной литературе. В работе впервые визуализированы эффекты воздействия рибонуклеазы и амфифильного компонента DL412.
Полный текст

Об авторах
А. Е. Григорьева
Институт химической биологии и фундаментальной медицины СО РАН
Email: lenryab@yandex.ru
Россия, 630090, Новосибирск
А. В. Тупицына
Институт химической биологии и фундаментальной медицины СО РАН
Email: lenryab@yandex.ru
Россия, 630090, Новосибирск
Е. С. Рябова
Институт химической биологии и фундаментальной медицины СО РАН
Email: lenryab@yandex.ru
Россия, 630090, Новосибирск
А. В. Бардашева
Институт химической биологии и фундаментальной медицины СО РАН
Email: lenryab@yandex.ru
Россия, 630090, Новосибирск
Д. А. Задворных
Институт химической биологии и фундаментальной медицины СО РАН
Email: lenryab@yandex.ru
Россия, 630090, Новосибирск
Л. С. Королева
Институт химической биологии и фундаментальной медицины СО РАН
Email: lenryab@yandex.ru
Россия, 630090, Новосибирск
В. Н. Сильников
Институт химической биологии и фундаментальной медицины СО РАН
Email: lenryab@yandex.ru
Россия, 630090, Новосибирск
Е. И. Рябчикова
Институт химической биологии и фундаментальной медицины СО РАН
Автор, ответственный за переписку.
Email: lenryab@yandex.ru
Россия, 630090, Новосибирск
Список литературы
- Thomas J.R., Hergenrother P.J. // Chem. Rev. 2008. V. 108. № 4. P. 1171–1224. https://doi.org/10.1021/cr0681546
- Zhang L., He J., Bai L., Ruan S., Yang T., Luo Y. // Med. Res. Rev. 2021. V. 41. № 4. P. 1855–1889. https://doi.org/10.1002/med.21780
- Yarinich L.A., Burakova E.A., Zakharov B.A., Boldyreva E.V., Babkina I.N., Tikunova N.V., Silnikov V.N. // Eur. J. Med. Chem. 2015. V. 95. № 563–573. https://doi.org/10.1016/j.ejmech.2015.03.033
- Fedorova A.A., Azzami K., Ryabchikova E.I., Spitsyna Y.E., Silnikov V.N., Ritter W., et al. // Antiviral Res. 2011. V. 91. № 3. P. 267–277. https://doi.org/10.1016/j.antiviral.2011.06.011
- Burakova E.A., Saranina I.V., Tikunova N.V., Nazarkina Z.K., Laktionov P.P., Karpinskaya L.A. et al. // Bioorg. Med. Chem. 2016. V. 24. № 22. P. 6012–6020. https://doi.org/10.1016/j.bmc.2016.09.064
- Grigor’eva A.E., Bardasheva A.V., Ryabova E.S., Tupitsyna A.V., Zadvornykh D.A., Koroleva L.S. et al. // Microorganisms. 2023. V. 11. № 9. P. 2192. https://doi.org/10.3390/microorganisms11092192
- Bonvin E., Personne H., Paschoud T., Reusser J., Gan B.H., Luscher A. et al. // ACS Infect. Dis. 2023. V. 9. № 12. P. 2593–2606. https://doi.org/10.1021/acsinfecdis.3c00421
- Cardoso M.H., Meneguetti B.T., Costa B.O., Buccini D.F., Oshiro K.G.N., Preza S.L.E. et al.// Int. J. Mol. Sci. 2019. V. 20. № 19. P. 4877. https://doi.org/10.3390/ijms20194877
- Majalekar P.P., Shirote P.J. // Curr. Drug Targets. 2020. V. 21. № 13. P. 1354–1370. https://doi.org/10.2174/1389450121666200621193355
- Zadvornykh D., Zhang Z., Liu C., Serpokrylovа I., Bardashevа A., Tikunova N., Silnikov V., Koroleva L. // Int. J. of Health Sci. 2022. V. 6. № S7. P. 3009–3023. https://doi.org/10.53730/ijhs.v6nS7.12110
- Wang Z., Liu X., Da T., Mao R., Hao Y., Yang N. et al. // Commun. Biol. 2020. V. 3. № 1. P. 41. https://doi.org/10.1038/s42003-020-0761-3
- Kuzminov A. // J. Bacteriol. 2024. V. 206. № 3. P. e0021123. https://doi.org/10.1128/jb.00211-23
- Grigor’eva A., Bardasheva A., Tupitsyna A., Amirkhanov N., Tikunova N., Pyshnyi D., Ryabchikova E. // Microorganisms. 2020. V. 8. № 12. P. 1991. https://doi.org/10.3390/microorganisms8121991
- Sharma P., Vaiwala R., Gopinath A.K., Chockalingam R., Ayappa K.G. // Langmuir. 2024. V. 40. № 15. P. 7791–7811. https://doi.org/10.1021/acs.langmuir.3c03474
- Maher C., Hassan K.A. // mBio. 2023. V. 14. № 6. P. e0120523. https://doi.org/10.1128/mbio.01205-23
- Lin J., Zhou D., Steitz T.A., Polikanov Y.S., Gagnon M.G. // Annu. Rev. Biochem. 2018. V. 87. № 451–478. https://doi.org/10.1146/annurev-biochem-062917-011942
- Brielle R., Pinel-Marie M.L., Chat S., Gillet R., Felden B. // Methods. 2017. V. 117. P. 59–66. https://doi.org/10.1016/j.ymeth.2016.10.003
- Cougot N., Molza A.E., Delesques J., Giudice E., Cavalier A., Rolland J.P., et al. // J. Mol. Biol. 2014. V. 426. № 2. P. 377–388. https://doi.org/10.1016/j.jmb.2013.09.035
- Herrero Del Valle A., Innis C.A. // FEMS Microbiol. Rev. 2020. V. 44. № 6. P. 793–803. https://doi.org/10.1093/femsre/fuaa032
- Razi A., Britton R.A., Ortega J. // Nucleic Acids Res. 2017. V. 45. № 3. P. 1027–1040. https://doi.org/10.1093/nar/gkw1231
- Ohniwa R.L., Morikawa K., Takeshita S.L., Kim J., Ohta T., Wada C., Takeyasu K. // Genes Cells. 2007. V. 12. № 10. P. 1141–1152. https://doi.org/10.1111/j.1365-2443.2007.01125.x
- Ishihama A. // EcoSal Plus. 2009. V. 3. № 2. https://doi.org/10.1128/ecosalplus.2.6
- Dillon S.C., Dorman C.J. // Nat. Rev. Microbiol. 2010. V. 8. № 3. P. 185–195. https://doi.org/10.1038/nrmicro2261
- Birnie A., Dekker C. // ACS Nano. 2021. V. 15. № 1. P. 111–124. https://doi.org/10.1021/acsnano.0c07397
- Bakshi S., Choi H., Weisshaar J.C. // Front. Microbiol. 2015. V. 6. № 636. https://doi.org/10.3389/fmicb.2015.00636
- Zimmerman S.B. // J. Struct. Biol. 2006. V. 153. № 2. P. 160–175. https://doi.org/10.1016/j.jsb.2005.10.011
- Khan S.R., Kuzminov A. // PLoS One. 2017. V. 12. № 12. P. e0190177. https://doi.org/10.1371/journal.pone.0190177
- Horne J.E., Brockwell D.J., Radford S.E. // J. Biol. Chem. 2020. V. 295. № 30. P. 10340–10367. https://doi.org/10.1074/jbc.REV120.011473
- Vergalli J., Bodrenko I.V., Masi M., Moynie L., Acosta-Gutierrez S. et al. // Nat. Rev. Microbiol. 2020. V. 18. № 3. P. 164–176. https://doi.org/10.1038/s41579-019-0294-2
- Manrique P.D., Lopez C.A., Gnanakaran S., Rybenkov V.V., Zgurskaya H.I. // Ann. N. Y. Acad. Sci. 2023. V. 1519. № 1. P. 46–62. https://doi.org/10.1111/nyas.14921
Дополнительные файлы
