Cane Pretreatment by Deep Eutetic Solvents to Increase its Reactivity During Enzymatic Hydrolysis with Cellulases

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Cane was pretreated with a number of deep eutectic solvents (DES) based on choline chloride (ChCl) as a hydrogen bond acceptor; among hydrogen bond donors, lactic and oxalic acids (LacA and OxA, respectively) were the most effective. Substrate pretreatment conditions (ratio of DES-components, temperature and exposure time) were optimized, leading to the highest yield of reducing sugars (RS) and glucose during subsequent enzymatic hydrolysis with cellulase preparation based on Penicillium verruculosum. It was been established that in the case of a mixture of ChCl with LacA (the molar ratio of components is 1 : 5) pretreatment should be carried out at 80°С for 24 h, and in the case of a mixture of ChCl with OxA (1 : 1) – at 80°С for 6 hours. The degree of conversion of the pretreated substrate after 48 hours of hydrolysis in the presence of the enzyme preparation (EP) B537 was 80 and 86% by absolutely dry substances for selected mixtures of ChCl/LacA and ChCl/OxA, respectively.

作者简介

M. Semenova

Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: margs@mail.ru
Russia, 119071, Moscow

I. Vasil’eva

Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Email: margs@mail.ru
Russia, 119071, Moscow

A. Yaropolov

Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Email: margs@mail.ru
Russia, 119071, Moscow

A. Sinitsyn

Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Email: margs@mail.ru
Russia, 119071, Moscow

参考

  1. Гусаков А.В., Синицын А.П. // Химия биомассы: биотоплива и биопластики. М.: Научный мир. 2017. С. 789. ISBN 978-5-91522-451-2.
  2. Conde-Mejiaa C., Jimenez-Gutierreza A., El-Halwagi M. // Process Safety and Environmental Protection. 2012. V. 90. P. 189–202. https://doi.org/10.1016/j.psep.2011.08.004
  3. Eggeman T., Elander R.T. // Biores. Technol. 2005. V. 96. P. 2019–2025. https://doi.org/10.1016/j.biortech.2005.01.017
  4. Satlewal A., Agrawal R., Bhagia S., Das P., Ragauskas A.J. // Biofuels Bioprod. Biorefin. 2017. V. 12. № 1. P. 83–107. https://doi.org/10.1002/bbb.1818
  5. Abbott A.P., Boothby D., Capper G., Davies D.L., Rasheed R.K. // J. Am. Chem. Soc. 2004. V. 126. № 29. P. 9142–9147. https://doi.org/10.1021/ja048266j
  6. Gorke J.T., Srienc F., Kazlauskas R.J. // ACS Symposium Series. 2010. V. 1038. P. 169–180. https://doi.org/10.1021/bk-2010-1038.ch014
  7. Mbous Y.P., Hayyan M., Hayyan A., Wong W.F., Hashim M.A., Looi C.Y. // Biotechnol. Adv. 2017. V. 35. № 2. P. 105–134. https://doi.org/10.1016/j.biotechadv.2016.11.006
  8. Abbott A.P., Capper G., Davies D.L., Rasheed R.K., Tambyrajah V. // Chem. Commun. 2003. V. 1. P. 70–71. https://doi.org/10.1039/B210714G
  9. Martins M.A.R., Pinho S.P., Coutinho J.A.P. // J. Solut. Chem. 2019. V. 48. P. 962–982.https://doi.org/10.1007/s10953-018-0793-1
  10. Smith E.L., Abbott A.P., Ryder K.S. // Chemical Reviews. 2014. V. 114. P. 11060–11082. https://doi.org/10.1021/cr300162p
  11. Oliveira V.K.D., Gregory C., Francois J. // ChemCatChem. 2015. V. 7. № 8. P. 1250–1260. https://doi.org/10.1002/cctc.201500134
  12. Abo-Hamad A., Hayyan M., Alsaadi M.A., Hashim M.A. // Chem. Eng. J. 2015. V. 273. P. 551–567. https://doi.org/10.1016/j.cej.2015.03.091
  13. Bhagia S., Li H., Gao X., Kumar R., Wyman C.E. // Biotechnol. Biofuels. 2016. V. 9. № 1. P. 245. https://doi.org/10.1186/s13068-016-0660-5
  14. Dumitrache A., Tolbert A., Natzke J., Brown S.D., Davison B.H., Ragauskas A.J. // Green Chem. 2017. V. 19. № 9. P. 2275–2285.https://doi.org/10.1039/c7gc00346c
  15. Tang X., Zuo M., Li Z., Liu H., Xiong C., Zeng X. et al. // ChemSusChem. 2017. V. 10. № 13. P. 2696–2706. https://doi.org/10.1002/cssc.201700457
  16. Zhang C.-W., Xia S.-Q., Ma P.-S. // Biores. Technol. 2016. V. 219. P. 1–5. https://doi.org/10.1016/j.biortech.2016.07.026
  17. Количественный химический анализ растительного сырья. / Ред. В.И. Шарков, И.И. Куйбина, Ю.П. Соловьева, Т.А. Павлова. М.: Лесная промышленность, 1976. С. 63–64.
  18. Morozova V.V., Gusakov A.V., Andrianov R.M., Pravilnikov A.G., Osipov D.O., Sinitsyn A.P. // Biotechnol. J. 2010. V. 5. № 8. P. 871–880. https://doi.org/10.1002/biot.201000050
  19. Dotsenko G.S., Gusakov A.V., Rozhkova A.M., Korotkova O.G., Sinitsyn A.P. // Process Biochem. 2015. V. 50. P. 1258–1263. https://doi.org/10.1016/j.procbio.2015.05.008
  20. Синицын А.П., Черноглазов В.М., Гусаков А.В. Итоги науки и техники. М.: ВИНИТИ, Биотехнология. 1990. № 25. С. 148.
  21. Sinitsyn A.P., Osipov D.O., Rozhkova A.M., Bushina E.V., Dotsenko G.S., Sinitsyna O.A. et al. // Appl. Biochem. Microbiol. 2014. V. 50. № 8. P. 761.
  22. Kumar A.K., Parikh B.S., Pravakar M. // Environ. Sci. Pollut. Res. 2016. V. 23. № 10. P. 9265–9275. https://doi.org/10.1007/s11356-015-4780-4
  23. Jablonsky M., Škulcova A., Kamenska L., Vrška M., Šima J. // Biores. 2015. V. 10. № 4. P. 8039–8047. https://doi.org/10.15376/biores.10.4.8039-8047
  24. Wahlstrom R., Hiltunen J., Pitaluga De Souza Nascente Sirkka M., Vuoti S., Kruus K. // RSC Adv. 2016. V. 6. № 72. P. 68100–68110. https://doi.org/10.1039/C6RA11719H
  25. Lynam J.G., Kumar N., Wong M.J. // Biores. Technol. 2017. V. 238. P. 684–689. https://doi.org/10.1016/j.biortech.2017.04.079
  26. Francisco M., van den Bruinhorst A., Kroon M.C. // Green Chem. 2012. V. 14. № 8. P. 2153–2157. https://doi.org/10.1039/C2GC35660K
  27. Tian D., Chandra R.P., Lee J.-S., Lu C., Saddler J.N. // Biotechnol. Biofuels. 2017. V. 10. № 1. P. 157. https://doi.org/10.1186/s13068-017-0846-5
  28. Procentese A., Johnson E., Orr V., Garruto Campanile A., Wood J.A., Marzocchella A., et al. // Biores. Technol. 2015. V. 192. P. 31–36. https://doi.org/10.1016/j.biortech.2015.05.053

补充文件

附件文件
动作
1. JATS XML
2.

下载 (91KB)

版权所有 © М.В. Семенова, И.С. Васильева, А.И. Ярополов, А.П. Синицын, 2023