Electron Transport in a Bipolar Transistor with a Superlattice in the Emitter
- 作者: Golikov O.L.1, Zabavichev I.Y.1, Ivanov A.S.1, Obolensky S.V.1, Obolenskaya E.S.1, Paveliev D.G1, Potekhin A.A.1, Puzanov A.S.1, Tarasova E.A.1, Khazanova S.V.1
 - 
							隶属关系: 
							
- Lobachevsky State University of Nizhny Novgorod (NNSU)
 
 - 期: 卷 53, 编号 1 (2024)
 - 页面: 51-57
 - 栏目: INSTRUMENTATION
 - URL: https://transsyst.ru/0544-1269/article/view/655245
 - DOI: https://doi.org/10.31857/S0544126924010051
 - ID: 655245
 
如何引用文章
详细
A set of transfer and output current-voltage characteristics of a bipolar transistor with a short-period superlattice in the emitter region has been calculated. It is shown that the presence of a superlattice in the tr ansistor structure leads to the fo rmation of a negative differential conductivity region, which makes it possible to implement not only amplification, but also the generation and multiplication of high-frequency oscillations.
作者简介
O. Golikov
Lobachevsky State University of Nizhny Novgorod (NNSU)
							编辑信件的主要联系方式.
							Email: khazanova@phys.unn.ru
				                					                																			                												                	俄罗斯联邦, 							Nizhny Novgorod						
I. Zabavichev
Lobachevsky State University of Nizhny Novgorod (NNSU)
														Email: khazanova@phys.unn.ru
				                					                																			                												                	俄罗斯联邦, 							Nizhny Novgorod						
A. Ivanov
Lobachevsky State University of Nizhny Novgorod (NNSU)
														Email: khazanova@phys.unn.ru
				                					                																			                												                	俄罗斯联邦, 							Nizhny Novgorod						
S. Obolensky
Lobachevsky State University of Nizhny Novgorod (NNSU)
														Email: khazanova@phys.unn.ru
				                					                																			                												                	俄罗斯联邦, 							Nizhny Novgorod						
E. Obolenskaya
Lobachevsky State University of Nizhny Novgorod (NNSU)
														Email: khazanova@phys.unn.ru
				                					                																			                												                	俄罗斯联邦, 							Nizhny Novgorod						
D. Paveliev
Lobachevsky State University of Nizhny Novgorod (NNSU)
														Email: khazanova@phys.unn.ru
				                					                																			                												                	俄罗斯联邦, 							Nizhny Novgorod						
A. Potekhin
Lobachevsky State University of Nizhny Novgorod (NNSU)
														Email: khazanova@phys.unn.ru
				                					                																			                												                	俄罗斯联邦, 							Nizhny Novgorod						
A. Puzanov
Lobachevsky State University of Nizhny Novgorod (NNSU)
														Email: khazanova@phys.unn.ru
				                					                																			                												                	俄罗斯联邦, 							Nizhny Novgorod						
E. Tarasova
Lobachevsky State University of Nizhny Novgorod (NNSU)
														Email: khazanova@phys.unn.ru
				                					                																			                												                	俄罗斯联邦, 							Nizhny Novgorod						
S. Khazanova
Lobachevsky State University of Nizhny Novgorod (NNSU)
														Email: khazanova@phys.unn.ru
				                					                																			                												                	俄罗斯联邦, 							Nizhny Novgorod						
参考
- Kholod A.N., Liniger M., Zaslavsky A., Arnaud d’Avitaya F. Cascaded resonant tunneling diode quantizer for analog-to-digital flash conversion // Appl. Phys. Lett., 79(1), 129 (2001).
 - Ourednik P., Feiginov M. Double-resonant-tunneling-diode patch-antenna oscillators // Appl. Phys. Lett., 120(18), 183501 (2022).
 - Reed M.A., Frensley W.R., Matyi R.J., Randall J.N., Seabaugh A.C. Realization of a three‐terminal resonant tunneling device: The bipolar quantum resonant tunneling transistor // Appl. Phys. Lett., 54(11), 1034 (1989).
 - Tsai J.H. Application of an AlGaAs/GaAs/InGaAs heterostructure emitter for a resonant-tunneling transistor // Appl. Phys. Lett., 75(17), 2668 (1999).
 - Popov V.G. Field-effect transistor with two-dimensional systems of carriers in the gate and channel // Semiconductors, 50(2), 236 (2016).
 - Liu W.C., Lour W.S. Modeling the DC Performance of Heterostructure-Emitter Bipolar Transistor // Appl. Phys. Lett., 70(1), 486 (1991).
 - Tsai J.H. Multiple negative differential resistance of InP/InGaAs superlattice-emitter resonant-tunneling bipolar transistor at room temperature // Appl. Phys. Lett., 83(13), 2695 (2003).
 - Tsai J.H., Huang C.H., Lour W.S., Chao Y.T., Ou-Yang J.J., Jhou J.C. High-performance InGaP/GaAs superlattice — emitter bipolar transistor with multiple S-shaped negative-differential-resistance switches under inverted operation mode // Thin Solid Films, 521, 168 (2012).
 - Pavelyev D.G., Vasilev A.P., Kozlov V.A., Obolensky E.S., Obolensky S.V., Ustinov V.M. Increase of Self-Oscillation and Transformation Frequencies in THz Diodes // IEEE Transactions on Terahertz Science and Technology, 8(2), 231 (2018).
 - Sun J.P., Mains R.K., Yang K., Haddad G.I. A self‐consistent model of Γ‐X mixing in GaAs/AlAs/GaAs quantum well structures using the quantum transmitting boundary method // J. Appl. Phys., 74(8), 5053 (1993).
 - Ohnishi H., Inata T., Muto S., Yokoyama N., Shibatomi A. Self‐consistent analysis of resonant tunneling current // Appl. Phys. Lett., 49(19), 1248 (1986).
 - Cahay M., McLennan M., Datta S., Lundstrom M.S. Importance of space‐charge effects in resonant tunneling devices // Appl. Phys. Lett., 50(10), 612 (1987).
 - Cardona M.P.Yu. Fundamentals of Semiconductor Physics. M.: FIZMATLIT, 2002. 560 p.
 - Zee С. Physics of Semiconductor Devices (M.: Mir, 1984). Book 1. 456 p.
 
补充文件
				
			
						
						
						
						
					






