Synthesis and optical properties of π-conjucated azulenes
- Autores: Merkhatuly N.1, Iskanderov A.N1, Zhokizhanova S.K2, Kokibasova G.T1
 - 
							Afiliações: 
							
- Academician Y.A. Buketov Karaganda University
 - S. Seifullin Kazakh AgroTechnical University
 
 - Edição: Volume 59, Nº 5 (2023)
 - Páginas: 603-608
 - Seção: Articles
 - URL: https://transsyst.ru/0514-7492/article/view/666274
 - DOI: https://doi.org/10.31857/S0514749223050063
 - EDN: https://elibrary.ru/DQUMUM
 - ID: 666274
 
Citar
Texto integral
Resumo
Knoevenagel condensation of azulenyl ketones with malononitrile synthesized π-conjugated 1-mono- and 1,3-bis(phenyl-dicyanovinyl)azulenes, and 1-mono- and 1,3-biphenylazulenes were obtained by the Kumada cross-coupling ofbromazulenes with PhMgBr. The electronic spectra of dicyanovinylatedazulenes showed intense absorption bands of intramolecular charge transfer in the visible region, as well as significant bathochromic shifts of the absorption band maxima for phenylazulenes.
			                Sobre autores
N. Merkhatuly
Academician Y.A. Buketov Karaganda University
														Email: merhatuly@ya.ru
				                					                																			                												                														
A. Iskanderov
Academician Y.A. Buketov Karaganda University
														Email: merhatuly@ya.ru
				                					                																			                												                														
S. Zhokizhanova
S. Seifullin Kazakh AgroTechnical University
														Email: merhatuly@ya.ru
				                					                																			                												                														
G. Kokibasova
Academician Y.A. Buketov Karaganda University
														Email: merhatuly@ya.ru
				                					                																			                												                														
Bibliografia
- Dong J.-X., Zhang H.-Li. Chin. Chem. Lett. 2016, 27, 1097-1104. doi: 10.1016/j.cclet.2016.05.005
 - Xin H., Ge C., Yang X., Gao H., Yang X., Gao X. Chem. Sci. 2016, 7, 6701-6705. doi: 10.1039/c6sc02504h
 - Xin H., Ge C., Jiao X., Yang X., Rundel K., McNeill C.R., Gao X. Chem. Int. Ed. 2018, 57, 1322-1326. doi: 10.1002/anie.201711802
 - Shi X., Sasmal A., Soule J.-F., Doucet H. Chem. Asian J. 2018, 13, 143-157. doi: 10.1002/asia.201701455
 - Zani L., Dessi A., Franchi D., Calamante M., Reginato G., Mordini A. Coord. Chem. Rev. 2019, 392, 177-236. doi: 10.1016/j.ccr.2019.04.007
 - Ou L., Zhou Y., Wu B., Zhu L. Chin. Chem. Lett. 2019, 30, 1903-1907. doi: 10.1016/j.cclet.2019.08.015
 - Xin H., Li J., Yang X., Gao X. J. Org. Chem. 2020, 85, 70-78. doi: 10.1021/acs.joc.9b01724
 - Xin H., Li J., Lu R.-Q., Gao X., Swager T.M. J. Am. Chem. Soc. 2020, 142, 13598-13605. doi: 10.1021/jacs.0c06299
 - Xin H., Hou B., Gao X. Acc. Chem. Res. 2021, 54, 1737-1753. doi: 10.1021/acs.accounts.0c00893
 - Lopez-Alled C.M., Park S.J., Lee D.J., Murfin L.C., Kociok-Kohn G., Hann J.L., Wenk J., James T.D., Kim H.M., Lewis S.E. Chem. Commun. 2021, 57, 10608-10611. doi: 10.1039/d1cc04122c
 
Arquivos suplementares
				
			
						
						
					
						
						
									


