Reactivity of octa(2,6-fluorophenyl)porphyrazine in acid-base interaction with nitrogen organic bases

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An interaction between octa(2,6-fluorophenyl)porphyrazine and pyridine, 2-methylpyridine, morpholine, piperidine, n-buthylamine, tert-buthylamine, diethylamine and triethylamine in benzene medium. Acid-base reaction between macroheterocycle and piperidine or n-buthylamine is a slow process resulting in forming the kinetically stable complexes with the proton transfer. The structures of these complexes are optimized using CAM-B3LYP/cc-pVTZ method. The changes in reactivity of octa(2,6-fluorophenyl)porphyrazine are analyzed as a function of spatial structure and proton-accepting ability of nitrogen base.

Full Text

Restricted Access

About the authors

O. A. Petrov

Ivanovo State University of Chemistry and Technology

Author for correspondence.
Email: poa@isuct.ru
ORCID iD: 0000-0003-3424-7135
Russian Federation, prosp. Sheremetevskii, 7, Ivanovo, 153000

G. A. Gamov

Ivanovo State University of Chemistry and Technology

Email: poa@isuct.ru
ORCID iD: 0000-0002-5240-212X
Russian Federation, prosp. Sheremetevskii, 7, Ivanovo, 153000

N. V. Chizhova

Krestov Institute of Solution Chemistry of Russian Academy of Sciences

Email: poa@isuct.ru
ORCID iD: 0000-0001-5387-5933
Russian Federation, ul. Akademicheskaya, 1, Ivanovo, 153045

N. Z. Mamardashvili

Krestov Institute of Solution Chemistry of Russian Academy of Sciences

Email: poa@isuct.ru
Russian Federation, ul. Akademicheskaya, 1, Ivanovo, 153045

References

  1. Novakova V., Donzello M.P., Ercolani C., Zimcik P., Stuzhin P.A. Coord. Chem. Rev. 2018, 361, 1–73. doi: 10.1016/j.ccr.2018.01.015.
  2. Шапошников Г.П., Кулинич В.П., Майзлиш В.Е. Модифицированные фталоцианины и их структурные аналоги. М.: Красанд. 2012, 480.
  3. Lupton J.M. Appl. Phys. Lett. 2008, 81, 2478–2492. doi: 10.1013/1.1509115.
  4. Петров О.А. ЖФХ. 2021, 95, 549-557. [Petrov O.A. Russ. J. Phys. Chem. A. 2021, 95, 696–704.] doi: 10.1134/S003602442104021Х
  5. Петров О.А., Осипова Г.В., Майзлиш В.Е., Аганичева К.А., Чуркина М.М. ЖОрХ. 2021, 57, 1281–1289. [Petrov O.A., Osipova G.V., Mayzlish V., Churkina M.M. Russ. J. Org. Chem. 2021, 57, 1428–1434.] doi: 10.1134/S1070363218040187
  6. Stuzhin P.A., Khelevina O.G., Berezin B.D. Phthalocyanines: Properties and Applications. Eds. C.C. Lesnoff, A.B.P. Lever. New York: VCH Publ. 1996, 4, 19–47
  7. Stuzhin P.A. J. Porphyrins Phthalocyanines. 2003, 7, 813-832. doi: 10.1142/S1088424603001014
  8. Молекулярные взаимодействия. Ред. Г. Ратайчак, У. Орвилл-Томас. М.: Мир. 1984, 2, 598.
  9. Базилевский М.В., Венер М.В. Усп. хим. 2003, 72, 3–39 [Basilevsky M.V., Vener M.V. Usp. Khim. 2003, 72, 3–39.] doi: 10.1070/RC2003v072n01ABEH000774
  10. Березин Д.Б. Макроциклический эффект и структурная химия порфиринов. М. : Красанд. 2010, 424.
  11. Handbook of Chemistry and Physics. Ed. W.M. Haynes. New York: CHC. 2013, 2668.
  12. Anet F.A.L., Yavari I. J. Amer. Chem. Soc. 1977, 99, 2794–2796.
  13. Blackburne I.D., Katritzky A.R., Takeuchi Y. Accouts Chem. Res. 1975, 8, 300–306.
  14. Русанов А.И., Чижова Н.В., Лихонина А.Е., Мамардашвили Н. Ж. ЖНХ. 2023, 68, 1050–1058. [Rusanov A.I., Chizhova N. V., Lihonina A.E., Mamardashvili N. Zh. Russ. J. Inorg. Chem. 2023, 68, 1062–1073] doi: 10.31857/S0044457Х23600329
  15. Frisch M.J., Trucks G.W., Schlegel H.B. Gaussian09. Revision A. 02. Wallingsdorf C.T.: Gaussian Inc. 2016.
  16. Yanai T., Tew D.P., Handy N.C. Chem. Phys. Lett. 2004, 393, 51–57. doi: 10.1016/j.cplett.2004.06.011
  17. Kendall R.A., Dunning T. H., Harrison R.J. J. Chem. Phys. 1992, 96, 6796–6806. doi: 10.1063/1.462569

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. EAS of H2Pa(C6H3F2)8 in benzene (1) and piperidine (2) at 298 K

Download (63KB)
3. Fig. 2. Change in the ESP of H2Pa(C6H3F2)8 in the presence of piperidine for 54 min at 323 K and СоPip= 2.53 mol/l in benzene

Download (91KB)
4. Fig. 3. Change in the ESP of H2Pa(C6H3F2)8 in the presence of n-butylamine for 68 min at 323 K and СоBuNH2= 2.53 mol/l in benzene

Download (88KB)
5. Fig. 4. Dependence of lgCo/C on the reaction time of H2Pa(C6H3F2)8 with piperidine (1), n-butylamine (2) in benzene at 343K and СоPip = СоBuNH2= 3.80 mol/l

Download (52KB)
6. Fig. 5. Dependence of lgkH343 on lgCoB for the reaction of H2Pa(C6H3F2)8 with piperidine (1) and n-butylamine (2) at 343K

Download (59KB)
7. Fig. 6. Structures of H2Pa(C6H3F2)8 (a) and [HPa(C6H3F2)8 HB] with piperidine (b) and n-butylamine (c) optimized by the CAM-B3LYP method

Download (270KB)
8. Fig. 7. The structure of [Pa(C6H3F2)8]··· [HB]2 with piperidine (a) and n-butylamine (b) optimized by the CAM-B3LYP method

Download (280KB)
9. Scheme

Download (97KB)

Copyright (c) 2024 Russian Academy of Sciences