Kinetic Evidence for Homogeneous Catalysis Mechanism in the Oxidative Mizoroki–Heck Reaction

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The paper presents the results of the study of the differential selectivity patterns in the oxidative Mizoroki–Heck reaction under competition of two alkenes or of two arylboronic acids. It has been demonstrated that the loading and nature (soluble under the reaction conditions or insoluble deposited on a heterogeneous support) of the Pd catalyst precursor does not affect the differential selectivity of the products of competing reactions. The results obtained indicate that the nature of the catalytically active species remains unchanged when the nature and loading of the precursor is varied. In accordance with accepted view about the interconversions of dissolved and solid forms of palladium in cross-coupling reactions, such species are truly dissolved molecular Pd complexes.

全文:

受限制的访问

作者简介

A. Kurokhtina

Irkutsk State University

Email: aschmidt@chem.isu.ru

Chemical Department

俄罗斯联邦, K. Marx str., 1, Irkutsk, 664003

E. Larina

Irkutsk State University

Email: aschmidt@chem.isu.ru

Chemical Department

俄罗斯联邦, K. Marx str., 1, Irkutsk, 664003

N. Lagoda

Irkutsk State University

Email: aschmidt@chem.isu.ru

Chemical Department

俄罗斯联邦, K. Marx str., 1, Irkutsk, 664003

A. Schmidt

Irkutsk State University

编辑信件的主要联系方式.
Email: aschmidt@chem.isu.ru

Chemical Department

俄罗斯联邦, K. Marx str., 1, Irkutsk, 664003

参考

  1. Heck R.F., Nolley J.P. // J. Org. Chem. 1972. V. 37. P. 2320.
  2. Zhang X.-S., Han Y.-P., Zhang Y., Liang Y.-M. // Adv. Synth. Catal. 2023. V. 365. P. 2436.
  3. Alisha M., Philip R.M., Anilkumar G. // J. Organomet. Chem. 2022. V. 959. Art. 122207.
  4. Le Bras J., Muzart J. // Chem. Rev. 2011. V. 111. P. 1170.
  5. Cirillo D., Karlsson S., Bjørsvik H. // Eur. J. Org. Chem. 2021. V. 40. P. 5519.
  6. Motevalizadeh S.F., Alipour M., Ashori F., Samzadeh-Kermani A., Hamadi H., Ganjali M.R., Aghahosseini H., Ramazani A., Khoobi M., Gholibegloo E. // Appl. Organomet. Chem. 2018. V. 32. P. e4123.
  7. Odell L.R., Sävmarker J., Lindh J., Nilsson P., Larhed M. Addition Reactions with Formation of Carbon-Carbon Bonds: (V) The Oxidative Heck Reaction / In: Comprehensive Organic Synthesis: Second Edition, Ed. P. Knochel. Elsevier Ltd., 2014. P. 492.
  8. Karimi B., Behzadnia H., Elhamifar D., Akhavan P.F., Esfahani F.K., Zamani A. // Synthesis. 2010. № 9. P. 1399.
  9. Lee A.-L. // Org. Biomol. Chem. 2016. V. 14. P. 5357.
  10. Mi X., Huang M., Guo H., Wu Y. // Tetrahedron. 2013. V. 69. P. 5123.
  11. Zhou C., Larock R.C. // J. Org. Chem. 2006. V. 71. P. 3184.
  12. Ourailidou M.E., Van Der Meer J.Y., Baas B.J., Jeronimus-Stratingh M., Gottumukkala A.L., Poelarends G.J., Minnaard A.J., Dekker F.J. // ChemBioChem. 2014. V. 15. P. 209.
  13. Delcamp J.H., Gormisky P.E., White M.C. // J. Am. Chem. Soc. 2013. V. 135. P. 8460.
  14. Han J., Sun X., Wang X., Wang Q., Hou S., Song X., Wei Y., Wang R., Ji W. // Org. Lett. 2020. V. 22. P. 1480.
  15. Li Y., Sun N., Hao M., Zhang C.L., Li H., Zhu W.Q. // Catal. Lett. 2021. V. 151. P. 764.
  16. Silarska E., Trzeciak A.M. // J. Mol. Catal. A: Chem. 2015. V. 408. P. 1.
  17. Шмидт А.Ф., Курохтина А.А., Ларина Е.В. // Кинетика и катализ. 2019. Т. 60. № 5. С. 555. (Schmidt A.F., Kurokhtina A.A., Larina E.V. // Kinet. Catal. 2019. V. 60. P. 551.)
  18. Ларина Е.В., Курохтина А.А., Лагода Н.А., Григорьева Т.А., Шмидт А.Ф. // Кинетика и катализ. 2023. Т. 64. № 4. С. 428. (Larina E.V., Kurokhtina A.A., Lagoda N.A., Grigoryeva T.A., Schmidt A.F. // Kinet. Catal. 2023. V. 64. P. 431.)
  19. Шмидт А.Ф., Курохтина А.А., Ларина Е.В., Лагода Н.А., Явсин Д.А., Гуревич С.А., Зеликман В.М., Кротова И.Н., Ростовщикова Т.Н., Тарханова И.Г. // Кинетика и Катализ. Т. 64. № 1. С. 39. (Schmidt A.F., Kurokhtina A.A., Larina E.V., Lagoda N.A., Yavsin D.A., Gurevich S.A., Zelikman V.M., Krotova I.N., Rostovshchikova T.N., Tarkhanova I.G. // Kinet. Catal. 2023. V. 64. № 1. P. 32.)
  20. Schmidt A.F., Kurokhtina A.A., Larina E.V., Lagoda N.A. // Organometallics. 2024. V. 43. P. 1879.
  21. Lagoda N.A., Larina E.V., Vidyaeva E.V., Kurokhtina A.A., Schmidt A.F. // Org. Proc. Res. Dev. 2021. V. 25. P. 916.
  22. Excel for Scientists and Engineers: Numerical Methods. 2nd Ed. E.J. Billo. John Wiley & Sons, 2007. 480 р.
  23. Мироненко Р.М., Бельская О.Б., Лихолобов В.А. // Российский химический журнал. 2019. T. 62. № 1–2. С. 141. (Mironenko R.M., Belskaya O.B., Likholobov V.A. // Rus. J. Gen. Chem. 2020. V. 90. P. 532.)
  24. Biffis A., Centomo P., Del Zotto A., Zecca M. // Chem. Rev. 2018. V. 118. P. 2249.
  25. Jeddi N., Scott N.W.J., Fairlamb I.J.S. // ACS Catal. 2022. V. 12. Р. 11615.
  26. Шмидт А.Ф., Курохтина А.А. // Кинетика и катализ. 2012. Т. 53. № 6. С. 760. (Schmidt A.F., Kurokhtina A.A. // Kinet. Catal. 2012. V. 53. P. 714.)
  27. Ananikov V.P., Beletskaya I.P. // Organometallics, 2012, 31, 1595.
  28. Prima D.O., Kulikovskaya N.S., Galushko A.S., Mironenko R.M., Ananikov V.P. // Curr. Opin. Green Sustain. Chem. 2021. V. 31. P. 100502
  29. Widegren J.A., Finke R.G. // J. Mol. Catal. A: Chem. 2003. V. 198. P. 317.
  30. Crabtree R.H. // Chem. Rev. 2012. V. 112. P. 1536.
  31. Gorunova O.N., Novitskiy I.M., Grishin Y.K., Gloriozov I.P., Roznyatovsky V.A., Khrustalev V.N., Kochetkov K.A., Dunina V.V. // Organometallics. 2018. V. 37. P. 2842.
  32. Chernyshev V.M., Astakhov A.V., Chikunov I.E., Tyurin R.V., Eremin D.B., Ranny G.S., Khrustalev V.N., Ananikov V.P. // ACS Catal. 2019. V. 9. P. 2984.
  33. Chagunda I.C., Fisher T., Schierling M., McIndoe J.S. // Organometallics. 2023. V. 42. P. 2938.
  34. Schmidt A.F., Kurokhtina A.A., Larina E.V. // Catal. Sci. Technol. 2014. V. 4. P. 3439.
  35. Köhler K., Kleist W., Pröckl S.S. // Inorg. Chem. 2007. V. 46. P. 1876.
  36. Galushko A.S., Ilyushenkova V.V., Burykina J.V., Shaydullin R.R., Pentsak E.O., Ananikov V.P. // Inorganics. 2023. V. 11. P. 260.
  37. Gnad C., Abram A., Urstöger A., Weigl F., Schuster M., Köhler K. // ACS Catal. 2020. V. 10. P. 6030.
  38. Handwerk D.R., Shipman P.D., Whitehead C.B., Özkar S., Finke R.G. // J. Phys. Chem. C. 2020. V. 124. P. 4852.
  39. Finney E.E., Finke R.G. // J. Coll. Interf. Sci. 2008. V. 317. P. 351.
  40. Schmidt A.F., Smirnov V.V. // Top. Catal. 2005. V. 32. P. 71.
  41. Темкин О.Н. // Кинетика и катализ. 2012. Т. 53. С. 326. (Temkin O.N. // Kinet. Catal. 2012. V. 53. P. 313.)
  42. Polynski M.V., Ananikov V.P. // ACS Catal. 2019. V. 9. Art. 3991.

补充文件

附件文件
动作
1. JATS XML
2. Scheme 1. Mutual transformations of dissolved and solid forms of palladium under conditions of the Mitsoroki–Heka oxidative reaction.

下载 (188KB)
3. Scheme 2. The Mitsoroki–Heka oxidative reaction under conditions of competition between a pair of alkenes (a) or a pair of arylboric acids (b).

下载 (286KB)
4. Fig. 1. Phase trajectories of the Mitsoroki–Heka oxidation reaction, constructed in coordinates of the total concentrations of the products of the transformation of competing styrene and n-butyl acrylate in reaction with 4-tolylboric acid (Scheme 2a), obtained in experiments with varying the nature and loading of the palladium precursor of the catalyst. Reaction conditions: [styrene] = [n-butyl acrylate] = 0.25 M; [4-tolylboric acid] = 1 M; [NaOAc] = 0.65MM; [NBu4Br] = 0.16MM, unless otherwise indicated; the arrow shows the direction of reaction development over time.

下载 (182KB)
5. Fig. 2. Phase trajectories of the Mitsoroki-Heka oxidation reaction, constructed in coordinates of the total concentrations of the transformation products of competing phenylboric and 4-acetylphenylboric acids in reaction with styrene (Scheme 2b), obtained in experiments with varying the nature and loading of the palladium precursor of the catalyst. Reaction conditions: [styrene] = 1 M; [phenylboric acid] = [4-acetylphenylboric acid] = 0.5 M; [NaOAc] = 0.65MM; [NBu4Br] = 0.16MM; the arrow shows the direction of reaction development over time.

下载 (163KB)