Kinetics of the Reaction of Gas-Phase Hydrogenolysis of Butyl Lactate to Produce 1,2-Propylene Glycol on a Cu/SiO2 Catalyst. A Review

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Kinetics of the of the reaction of gas-phase hydrogenolysis of bytillactate over 45.5%Cu/SiO2 catalyst was investigated. The catalyst provides high specific productivity (6 gPG gcat–1 h–1), bytillactate conversion (up to 99.5%) and selectivity to produce 1,2-Propylene glycol (up to 97%) at 180°С, which allows us to consider the investigated reaction as promising for industrial synthesis of 1,2-Propylene glycol. As a result of the research, the influence of process conditions (pressure, ratio of reagents, concentration of products, temperature) on the reaction rate was established, a kinetic equation was obtained, the values of the kinetic parameters of this equation were determined, which makes it possible to adequately describe the experimental data, and the effective activation energy of the reaction was calculated.

Full Text

Restricted Access

About the authors

R. A. Kozlovsky

Dmitry Mendeleev University of Chemical Technology of Russia

Author for correspondence.
Email: kozlovskii.r.a@muctr.ru
Russian Federation, Moscow

M. S. Voronov

Dmitry Mendeleev University of Chemical Technology of Russia

Email: kozlovskii.r.a@muctr.ru
Russian Federation, Moscow

V. N. Sapunov

Dmitry Mendeleev University of Chemical Technology of Russia

Email: kozlovskii.r.a@muctr.ru
Russian Federation, Moscow

Yu. P. Suchkov

Dmitry Mendeleev University of Chemical Technology of Russia

Email: kozlovskii.r.a@muctr.ru
Russian Federation, Moscow

V. S. Dubrovsky

Dmitry Mendeleev University of Chemical Technology of Russia

Email: kozlovskii.r.a@muctr.ru
Russian Federation, Moscow

D. S. Knyazev

Dmitry Mendeleev University of Chemical Technology of Russia

Email: kozlovskii.r.a@muctr.ru
Russian Federation, Moscow

I. A. Kozlovsky

Dmitry Mendeleev University of Chemical Technology of Russia

Email: kozlovskii.r.a@muctr.ru
Russian Federation, Moscow

D. Yu. Efimkin

Digital Technologies and Platforms LLC

Email: EfimkinDIu@digtp.com
Russian Federation, Moscow

References

  1. https://www.mordorintelligence.com/ru/industry-reports/propylene-glycol-market
  2. Weissermel K., Arpe H.-J. Industrial Organic Chemistry. Weinheim: WILEY‐VCH Verlag GmbH & Co. KGaA, 2003. doi: 10.1002/9783527619191
  3. Taylor R., Nattrass L., Alberts G., Robson P., Chudziak C., Bauen A., Libelli I.M., Lotti G., Prussi M., Nistri R., Chiaramonti D., López-Contreras A.M., Bos H.L., Eggink G., Springer J., Bakker R., Ree R.V. From the Sugar Platform to biofuels and biochemicals: Final report for the European Commission Directorate-General Energy. № ENER/C2/423-2012/SI2.673791. E4tech (UK) Ltd, April 2015. doi: 10.13140/RG.2.1.2060.9127
  4. Kozlovskiy R., Shvets V., Kuznetsov A. Technological aspects of the production of biodegradable polymers and other chemicals from renewable sources using lactic acid // J. Clean. Prod. 2017. V. 155. P. 157. doi: 10.1016/j.jclepro.2016.08.092
  5. Kuznetsov A., Beloded A., Derunets A., Grosheva V., Vakar L., Kozlovskiy R., Shvets V. Biosynthesis of lactic acid in a membrane bioreactor for cleaner technology of polylactide production // Clean Technol. Environ. Policy. 2017. V. 19. № 3. P. 869. doi: 10.1007/s10098-016-1275-z
  6. Кузнецов А.Е., Козловский Р.А., Белодед А.В., Козловский И.А., Козловский М.Р., Кучеренко В.В., Насиров И.Р. Потенциал совершенствования технологии получения молочной кислоты для синтеза полилактида // Химическая промышленность сегодня. 2022. № 2. С. 2. doi: 10.53884/27132854_2022_3_2
  7. Yurieva T.M., Kustova G.N., Minyukova T.P., Poels E.K., Bliek A., Demeshkina M.P., Plyasova L.M., Kriger T.A., Zaikovskii V.I. Non-hydrothermal synthesis of copper-, zinc- and copper-zinc hydrosilicates // Mater. Res. Innov. 2001. V. 5. № 1. Р. 3.
  8. Yurieva T.M., Minyukova T.P., Kustova G.N., Plyasova L.M., Kriger T.A., Demeshkina V.I., Zaikovskii M.P., Malakhov V.V., Dovlitova L.S. Copper ions distribution in synthetic copper-zinc hydrosilicate // Mater. Res. Innov. 2001. V. 5. № 2. P. 74.
  9. Симонов М.Н., Симакова И.Л., Минюкова Т.П., Хасин А.А. Гидрирование молочной кислоты на восстановленных медьсодержащих катализаторах // Изв. РАН, серия хим. 2009. Т. 58. № 6. С. 1086. (Simonov M.N., Simakova I.L., Minyukova T.P., Khassin A.A. Hydrogenation of lactic acid on reduced copper-containing catalysts // Russ. Chem. Bull. 2009. V. 58. № 6. P. 1114.)
  10. Simonov M.N., Zaikin P.A., Simakova I.L. Highly selective catalytic propylene glycol synthesis from alkyl lactate over copper on silica: Performance and mechanism // Appl. Catal. B: Environ. 2012. V. 119–120. P. 340. doi: 10.1016/j.apcatb.2012.03.003
  11. Marchesan A.N., Oncken M.P., Filho R.M., Maciel M.R.W. A roadmap for renewable C2–C3 glycols production: A process engineering approach // Green Chem. 2019. № 19. P. 1.
  12. Xi Y., Jackson J.E., Miller D.J. Hydrogenation of Lactic Acid to 1,2-Propanediol over Ru-Based Catalysts // ChemCatChem 10(4), 2017, Open Access doi: 10.1002/cctc.201701329.
  13. Xi Y., Jackson J.E., Miller D.J. Characterizing Lactic Acid Hydrogenolysis Rates in Laboratory Trickle Bed Reactors // Ind. Eng. Chem. Res. 2011. V. 50. P. 5440. dx.doi.org/10.1021/ie1023194
  14. Шмид Р., Сапунов В.Н. Неформальная кинетика. В поисках путей химических реакций. Москва: Мир, 1985. 264 с. (Schmid R., Sapunov V.H. Non-formal Kinetics. In Search for Chemical Reaction Pathways. Verlag Chemie, Weinheim–Deerfield Beach–Base1 1982. 199 P. doi: 10.1002/cite.330550907)

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic diagram of the laboratory catalytic unit: E1 - vessel with initial liquid components, ZhN-1 - liquid pump, Gas-1 - hydrogen cylinder, Gas-2 - nitrogen cylinder, Kr-1-Kr-6 - ball valve, RD1, RD2 - pressure regulator, M-1, M-2, M-3 - manometer, RWG-1, РРГ-2 - gas flow regulator, ДД-1 - pressure sensor, СМ-1 - mixer, И-1 - evaporator, П-1 - evaporator furnace, Р-1 - reactor, П-2 - reactor furnace, С-1 - separator, РД-3 - reactor pressure regulator, СГ-1 - gas counter

Download (399KB)
3. Fig. 2. Dependences of BL conversion (CBL) and selectivity of 1,2-PG formation (SPG) on catalyst operation time

Download (67KB)
4. Scheme 1

Download (22KB)
5. Fig. 3. Dependence of by-product concentration on BL conversion

Download (87KB)
6. Fig. 4. Dependence of selectivity of 1,2-PG formation on BL conversion

Download (58KB)
7. Fig. 5. Dependence of partial pressure of butyl lactate (RBL) on contact time (τ) at 180°C and the following conditions: a - total pressure 10 at, initial molar ratio of hydrogen : butyllactate (βH2) is 20 (♦), 40 (■), 60 (▲), 80 (●), 100 (*); b - βH2 = 40 , total pressure is 2 (♦), 5 (■), 10 (▲), 15 (×) atm; c - total pressure 10 atm, βH2 = 40 mol/mol, initial molar ratio butanol : butyl lactate (βBuOH) is 0 (▲), 0. 5 (●), 1.0 (■); d - total pressure 10 at, βH2 = 40, initial molar ratio propylene glycol : butyllactate (βBuOH) is 0 (×), 0.5 (♦), 1.0 (■), 3.5 (▲)

Download (416KB)
8. Fig. 6. Linear correlations obtained by transformation of the kinetic equation: a - dependence on RBL,0 for a series of experiments with varying βH2; b - dependence on RBL,0 for a series of experiments with varying total pressure at βH2 = 40; c - dependence on PPG,0 for a series of experiments with varying PPG,0

Download (243KB)
9. Fig. 7. Comparison of experimental and calculated values of butyl lactate conversion from contact time at 180°C and the following conditions: a - total pressure 2 at, initial molar ratio hydrogen : butyllactate βH2 = 40; b - total pressure 5 at, βH2 = 40; c - total pressure 10 at, βH2 = 40; d - total pressure 15 at, βH2 = 40; e - total pressure 10 at, βH2 = 60; f - total pressure 10 at, βH2 = 80; g - total pressure 10 at, βH2 = 100; h - total pressure 10 at, βH2 = 40, βPG = 0. 5; i - total pressure 10 at, βH2 = 40, βPG = 1; j - total pressure 10 at, βH2 = 40, βPG = 0.25, βBuOH = 0.25; l - total pressure 10 at, βH2 = 40, βPG = 1.75, βBuOH = 1.75

Download (758KB)
10. Fig. 8. Correlation of experimental and calculated values of butyl lactate conversion for the whole array of experiments

Download (98KB)
11. Fig. 9. Variation of butyl lactate conversion from contact time (τ) (a) and reduced contact time (η × τ) (b) at temperatures of 170 (♦), 180 (■), 190 (●) and 200°C (▲)

Download (191KB)
12. Fig. 10. Temperature dependence of the initial reaction rate (a) and transformation coefficient (b) in linear coordinates of the Arrhenius equation

Download (138KB)