Structure and Activity of Catalytic Systems Synthesized by Precipitation in Subcritical Water in the Fischer–Tropsch Liquid-Phase Synthesis

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Modern developments in the field of creating fuels from alternative sources are aimed at producing liquid gasoline-type hydrocarbons with high yield. Fischer–Tropsch synthesis (FTS) is a well–known method for more than a hundred years that allows to obtain a wide range of hydrocarbons from carbon and hydrogen oxides. In this work, three metal-containing catalytic systems deposited on super-crosslinked polystyrene (HPS) have been synthesized (2% Fe– HPS, 1% Ru– HPS and 2% Fe–1% Ru– HPS) by precipitation in subcritical water, and their catalytic effect in the process of liquid-phase FTS was studied. The addition of Ru to the Fe-containing catalyst leads to an increase in the dispersion of active phase particles and, consequently, an increase in the activity of the catalytic system. The bimetallic catalyst 2% Fe–1% Ru–HPS showed a catalytic activity 1.5 times higher than that of the sample 2%Fe–HPS, selectivity with respect to alkanes C5–C11 was 98.5 mol. %. Based on data from kinetic experiments and physico-chemical studies of the bimetallic catalyst, a scheme for the liquid phase process was proposed. the Fischer–Tropsch synthesis.

Texto integral

Acesso é fechado

Sobre autores

M. Markova

Tver State Technical University; Tver State University

Autor responsável pela correspondência
Email: mashulikmarkova@gmail.com
Rússia, A. Nikitin str., 22, Tver, 170026; Zhelyabova str., 33, Tver, 170100

A. Stepacheva

Tver State Technical University

Email: mashulikmarkova@gmail.com
Rússia, A. Nikitin str., 22, Tver, 170026

A. Bykov

Tver State Technical University

Email: mashulikmarkova@gmail.com
Rússia, A. Nikitin str., 22, Tver, 170026

Y. Larichev

Boreskov Institute of Catalysis SB RAS

Email: mashulikmarkova@gmail.com
Rússia, Acad. Lavrentieva ave., 5, Novosibirsk, 630090

V. Doluda

Tver State Technical University

Email: mashulikmarkova@gmail.com
Rússia, A. Nikitin str., 22, Tver, 170026

O. Tkachenko

N.D. Zelinsky Institute of Organic Chemistry RAS

Email: mashulikmarkova@gmail.com
Rússia, Leninsky prosp., 47, Moscow, 119991

M. Sulman

Tver State Technical University

Email: mashulikmarkova@gmail.com
Rússia, A. Nikitin str., 22, Tver, 170026

Bibliografia

  1. van Steen E., Claeys M. // Chem. Eng. Technol. 2008. V. 31. P. 655.
  2. Tijmensen M.J.A., Faaij A.P.C., Hamelinck C.N., van Hardeveld M.R.M. // Biomass Bioenergy. 2002. V. 23. P. 129.
  3. Соломоник И.Г., Грязнов К.О., Пушина Е.А., Приходько Д.Д., Мордкович В.З. // Кинетика и катализ. 2022. Т. 63. № 3. С. 333. (Solomonik I.G., Gryaznov K.O., Pushina E.A., Prikhodko D.D., Mordkovich V.Z. // Kinet. Catal. 2022. V. 63. №. 3. P. 279.)
  4. Яковенко Р.Е., Зубков И.Н., Нарочный Г.Б., Папета О.П., Денисов О.Д., Савостьянов А.П. // Кинетика и катализ. 2020. Т. 61. № 2. С. 278. (Yakovenko R.E., Zubkov I.N., Narochniy G.B., Papeta O.P., Denisov O.D., Savost’yanov A.P. // Kinet. Catal. 2020. V. 61. 3. 2. P. 310.)
  5. Чернавский П.А., Панкина Г.В., Казанцев Р.В., Максимов С.В., Купреенко С.Ю., Харланов А.Н., Елисеев О.Л. // Кинетика и катализ. 2022. Т. 63. № 3. С. 363. (Chernavskii P.A., Pankina G.V., Maksimov S.V., Kupreenko S.Y., Kharlanov A.N., Kazantsev R.V., Eliseev O.L. // Kinet. Catal. 2022. V. 63. № 3. P. 304.)
  6. Buthelezi A.S., Tucker C.L., Heeres H.J., Shozi M.L., van de Bovenkamp H.H., Ntola P. // Res. Chem. 2024. V. 9. Art. 101623.
  7. Eran T.N., Guyot J., Boffito D.C., Patience G.S. // Chem. Eng. J. 2024. Vol. 500. Art. 156796.
  8. Gavrilović Lj., Kazi S.S., Oliveira A., Encinas O.L.I., Blekkan E.A. // Catal. Today. 2024. V. 432. Art. 114614.
  9. Gong J., Shen L., Liu Y., Qiao E., Liu L., Min F. // Fuel. 2024. V. 364. Art. 131125.
  10. Schulz H. // Appl. Catal. A: Gen. 2020. V. 602. P. 117695.
  11. Shi B., Liao Y., Callihan Z.J., Shoopman B.T., Luo M. // Appl. Catal. A: Gen. 2020. V. 602. P. 117607.
  12. Iglesia E., Soled S.L., Fiato R.A., Via G.H. // J. Catal. 1993. V. 143. P. 345.
  13. Raje A.P., O’Brien R.J., Davis B.H. // J. Catal. 1998. V. 180. № 1. P. 36.
  14. Ngantsoue-Hoc W., Zhang Y.Q., O’Brien R.J., Luo M.S., Davis B.H. // Appl. Catal. A: Gen. 2002. V. 236. P. 77.
  15. Bai L., Xiang H.W., Li Y.W., Han Y.Z., Zhong B. // Fuel. 2002. V. 81. P. 1577.
  16. Ma G., Wang X., Xu Ya., Wang Q., Wang J., Lin J., Wang H., Dong Ch., Zhang Ch., Ding M. // ACS Appl. Energy Mater. 2018. V. 1. № 8. P. 4304.
  17. Li S., Krishnamoorthy S., Li A., Meitzner G.D., Iglesia E. // J. Catal. 2002. V. 206. P. 202.
  18. Liuzzi D., P´erez-Alonso F.J., Rojas S. // Fuel. 2021. V. 293. P. 120435.
  19. Fraser I., Rabiua A.M., van Steen E. // Energy Procedia. 2016. V. 100. P. 210.
  20. Badoga S., Kamath G., Dalai A. // Appl. Catal. A: Gen. 2020. V. 607. P. 117861.
  21. Alayata A., Echeverria E., Mcllroy D.N., McDonald A.G. // Fuel Proc. Technol. 2018. V. 177. P. 89.
  22. Liu X., Ma C., Zhao W., Zhang J., Chen J. // J. Fuel Chem. Technol. 2021. V. 49. № 10. P. 1504.
  23. Markova M.E., Stepacheva A.A., Kosivtsov Y.Y., Sidorov A.I., Matveeva V.G., Sulman M.G. // Rus. J. Phys. Chem. B. 2021. V. 15. P. 1120.
  24. Маркова М.Е., Гавриленко А.В., Степачёва А.А., Молчанов В.П., Матвеева В.Г., Сульман М.Г., Сульман Э.М. // Кинетика и катализ. 2019. Т. 60. № 5. С. 624. (Markova M.E., Gavrilenko A.V., Stepacheva A.A., Molchanov V.P., Matveeva V.G., Sulman M.G., Sulman E.M. // Kinet. Catal. 2019. V. 60. № 5. P. 618.)
  25. Larichev Yu.V., Tuzikov F.V. // J. Appl. Cryst. 2013. V. 46. № 3. P. 752.
  26. Wagner C.D., Riggs W.M., Davis L.E., Moulder J.F., Muilenberg G.E. Handbook of X-Ray photoelectron spectroscopy. A reference book of standard data for use in X-ray photoelectron spectroscopy. Perkin‐Elmer Corp., Physical Electronics Division, Eden Prairie, Minnesota, USA, 1979. 261 p.
  27. Li C., Che W., Liu S.-Y., Liao G. // Mater. Today Chem. 2023. V. 29. Art. 101392.
  28. Bykov A.V., Demidenko G.N., Nikoshvili L.Zh., Sulman M.G., Kiwi-Minsker L. // Chem. Eng. Technol. 2021. V. 44. № 11. P. 1955.
  29. Schipanskaya E.O., Stepacheva A.A., Markova M.E., Rud D.V., Nikoshvili L.Zh., Sidorov A.I., Matveeva V.G., Sulman M.G. // Catal. Chem. Eng. Technol. 2021. V. 44. № 11. P. 2109.
  30. Stepacheva A.A., Sidorov A.I., Matveeva V.G., Sulman M.G., Sulman E.M. // Chem. Eng. Technol. 2019. V. 42. № 4. P. 780.
  31. Matveeva V.G., Stepacheva A.A., Shimanskaya E.I., Markova M.E., Sidorov A.I., Bykov A.V., Sul’man M.G., Sul’man E.M. // Rus. J. Phys. Chem. B. 2019. V. 13. № 6. P. 1044.
  32. Manaenkov O.V., Kislitsa O.V., Matveeva V.G., Kosivtsov Y.Y., Sulman M.G. // ChemChemTech. 2023. V. 66. № 8. P. 70.
  33. Stepacheva A.A., Lugovoy Y.V., Manaenkov O.V., Sidorov A.I., Matveeva V.G., Sulman M.G., Sulman E.M. // Pure Appl. Chem. 2020. V. 92. № 6. P. 817.
  34. Devadas A., Baranton S., Coutanceau C. // Front. Energy Res. 2020. V. 8. Art. 571704.
  35. Liu H., Xia G., Zhang R., Jiang P., Chen J., Chen Q. // RSC Adv. 2017. V. 7. P. 3686.
  36. Noberi C., Kaya C. // SN Appl. Sci. 2019. V. 1. P. 947.
  37. Liang C., Liu H., Zhou J., Peng X., Zhang H. // J. Chem. 2015. Art. 791829.
  38. Moradi Z., Ghorbani-Choghamarani A. // Sci. Rep. 2021. V. 11. P. 23967.
  39. Wang Y., Peng Z., Jiang W. // J. Mater. Sci.: Mater. Electron. 2015. V. 26. P. 4880.
  40. Khoshsang H., Ghaffarinejad A., Kazemi H., Jabarian S. // J. Water. Environ. Nanotechnol. 2018. V. 3. № 3. P. 191.
  41. Grosvenor A.P., Kobe B.A., Biesinger M.C., Mclntyre N.S. // Surf. Interface Anal. 2004. V. 36. P. 1564.
  42. Lesiak B., Rangam N., Jiricek P., Gordeev I., Toth J., Kover L., Mohai M., Borowicz P. // Front. Chem. 2019. V. 7. P. 642.
  43. Ge X., Liu H., Ding X., Liu Y. // Nanomaterials. 2022. V. 12. № 3. P. 539.
  44. Srivatsa S.C., Kumar V.P., Viswanadham B., Amirineni S. // J. Nanosci. Nanotechnol. 2015. V.15. № 7. P. 5403.
  45. Hadjiivanov K., Lavalley J.-C., Lamotte J., Mauge F., Saint-Just J., Che M. // J. Catal. 1998. V. 176. P. 415.
  46. McQuire M.W., Rochester C.H. // J. Catal. 1993. V. 141. P. 355.
  47. Mizushima T., Tohji K., Udagawa Y., Ueno A. // J. Am. Chem. Soc. 1990. V. 112. P. 7887.
  48. Kharlanov A.N., Pankina G.V., Lunin V.V. // Rus. J. Phys. Chem. 2019. V. 93. № 12. P. 1780.
  49. Johnston C., Jorgensen N., Rochester C.H. // J. Chem. Soc. Faraday Trans. I. 1988. V. 84. № 1. P. 309.
  50. Bukur D.B., Todic B., Elbashir N. // Catal. Today. 2016. V. 275. P. 66.
  51. Hibbitts D.D., Loveless B.T., Neurock M., Iglesia E. // Angew. Chem. Int. Ed. 2013. V. 52. № 47. P. 12273.
  52. Carballo J.M.G., Finocchio E., García-Rodriguez S., Ojeda M., Fierro J.L.G., Busca G. // Catal. Today. 2013. V. 214. P. 2.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Particle size distribution obtained by SAXS for 2% Fe–SPS, 1% Ru–SPS and 2% Fe–1% Ru–SPS samples.

Baixar (18KB)
3. Rice. 2. X-ray diffraction patterns of samples: SPS and 1% Ru–SPS (a), 2% Fe–1% Ru–SPS (b), and 10% Fe–1% Ru–SPS (c).

Baixar (55KB)
4. Fig. 3. High-resolution spectra for the Fe2p and Ru3d sublevels for the 2% Fe–SPS (a), 1% Ru–SPS (b), 2% Fe–1% Ru–SPS (c, d) and 2% Fe–1% Ru–SPS-ref (d, f) samples.

Baixar (154KB)
5. Fig. 4. IR diffuse reflectance spectra of CO adsorption for samples of 1% Ru–SPS (a), 2% Fe–SPS (b) and 2% Fe–1% Ru–SPS (c).

Baixar (54KB)
6. Fig. 5. Kinetic curves of CO (a) and H2 (b) consumption in the Fischer–Tropsch synthesis in the presence of 1% Ru–SPS, 2% Fe–SPS and 2% Fe–1% Ru–SPS catalysts.

Baixar (30KB)
7. Fig. 6. Curves of formation of liquid-phase Fischer–Tropsch synthesis products in the presence of 2% Fe–SPS (a), 1% Ru–SPS (b), 2% Fe–1% Ru–SPS (c) after 1.5 (●), 3 (○), 6 (▼) and 9 h (∆) from the beginning of the experiment.

Baixar (44KB)
8. Scheme 1. Scheme of liquid-phase Fischer–Tropsch synthesis.

Baixar (50KB)