Kinetics and Mechanism of Allyl Chloride Epoxidation Using TS-1 as a Catalyst and Hydrogen Peroxide

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The kinetics of allyl chloride epoxidation with hydrogen peroxide at TS-1 catalyst has been studied. The kinetic data analysis allowed us to exclude only a part of the hypotheses about the mechanism, which were formulated on the basis of the available physico-chemical information about the structure of the TS-1 active center. The characteristics of the allyl chloride epoxidation process were compared with the characteristics of allyl alcohol epoxidation. In order to adequately describe the experimental data, it is necessary to take into account the strong binding of the active sites of the catalyst with hydrogen peroxide and epichlorohydrin. The Eley–Rideal type mechanism is recognized as an adequate kinetic model. Additional physico-chemical or computational data are needed to further discriminate the remaining hypotheses. Another way is to use additional information about the kinetics of by–products formation.

 

Full Text

Restricted Access

About the authors

Z. Yu. Pastukhova

MIREA – Russian Technological University, Lomonosov Institute of Fine Chemical Technologies

Author for correspondence.
Email: pastuhova@mirea.ru
Russian Federation, 86 Vernadsky Ave., Moscow, 119571

Е. А. Katsman

MIREA – Russian Technological University, Lomonosov Institute of Fine Chemical Technologies

Email: pastuhova@mirea.ru
Russian Federation, 86 Vernadsky Ave., Moscow, 119571

L. G. Bruk

MIREA – Russian Technological University, Lomonosov Institute of Fine Chemical Technologies

Email: pastuhova@mirea.ru
Russian Federation, 86 Vernadsky Ave., Moscow, 119571

References

  1. Wróblewska A., Fajdek A. // J. Hazard. Mater. 2010. V. 179. № 1. P. 258.
  2. Sonnati M.O., Amigoni S., Tafn de Givenchy E.P., Darmanin T., Choulet O., Guittard F. // Green Chem. 2013. V. 15. № 2. P. 283.
  3. Russo V., Tesser R., Santacesaria E., Di Serio M. // Ind. Eng. Chem. Res. 2013. V. 52. P. 1168.
  4. Cucciniello R., Pironti C., Capacchione C., Proto A., Di Serio M. // Catal. Commun. 2016. V. 77. P. 98.
  5. Seiwert J., Leibig D., Kemmer-Jonas U., Bauer M., Perevyazko I., Preis J., Frey H. // Macromolecules. 2016. V. 49. № 1. P. 38.
  6. García-Aguilar J., Fernández-Catalá J., Juan-Juan J., Such-Basáñez I., Chinchilla L.E., Calvino-Gámez J.J., Cazorla-Amorós D., Berenguer-Murcia Á. // J. Catal. 2020. V. 386. P. 94.
  7. Salonen P., Schachner J.A., Peuronen A., Lahtinen M., Belaj F., Mösch-Zanetti N.C., Lehtonen A. // J. Mol. Catal. 2023. V. 540. Art. 113034.
  8. He Q., Pu M.-P., Jiang Zh., Wang H., Feng X., Liu X. // J. Am. Chem. Soc. 2023. V. 145. № 28. P. 15611.
  9. Ji S., Cao G.-P., Lv H., Gao P., Wang C.-X. // J. Mol. Catal. 2024. V. 564. 114319.
  10. Gomes D.M., Yao X., Neves P., Pinna N., Russo P.A., Valente A.A. // Catal. Sci. Technol. 2024. V. 14. P. 646.
  11. Курганова Е.А., Фролов А.С., Канаев С.А., Кошель Г.Н., Петухов А.А., Рыбина Г.В., Плахтинский В.В., Кабанова В.С., Смурова А.А. // Тонкие химические технологии. 2023. Т. 18. № 6. С. 505. (Kurganova E.A., Frolov A.S., Kanaev S.A., Koshel G.N., Petukhov A.A., Rybina G.V., Plakhtinskii V.V., Kabanova V.S., Smurova A.A. // Fine Chem. Technol. 2023. V. 18. № 6. P. 505.)
  12. Notari B. // Stud. Surf. Sci. Catal. 1988. V. 37. P. 413.
  13. Belussi G., Carati A., Clerici M.G., Maddinelli G., Millini R. // J. Catal. 1992. V. 133. P. 220.
  14. Maspero F., Romano U. // J. Catal. 1994. V. 146. P. 476.
  15. Notari B. // Adv. Catal. 1996. V. 41. P. 253.
  16. Saxton R.J. // Top. Catal. 1999. V. 9. P. 43.
  17. Clerici M.G. // Top. Catal. 2000. V. 13. P. 373.
  18. Huybrechts D.R.C., De Bruycker L., Jacobs P.A. // Nature. 1990. V. 345. P. 240.
  19. Reddy J.S., Jacobs P.A. // Catal. Lett. 1996. V. 37. P. 213.
  20. Roffia P., Leofanti G., Cesana A., Mantegazza M.A., Padovan M., Petrini G., Tonti S., Gervasutti P. New Developments in Selective Oxidation, Studies in Surface Science and Catalysis, V. 82. Amsterdam: Elsevier, 1990. 543 p.
  21. Mantegazza M.A., Petrini G., Spano G., Bagatin R., Rivetti F. // J. Mol. Catal. A. 1999. V. 146. P. 223.
  22. Холдеева О.А., Трухан Н.Н. // Успехи химии. 2006. Т. 75. № 5. С. 460. (Kholdeeva О.А., Trukhan N.N. // Russ. Chem. Rev. 2006. V. 75. № 5. P. 411.)
  23. Есипович А.Л., Белоусов А.С., Канаков Е.А., Миронова В.Ю., Рогожин А.Е., Данов С.М., Воротынцев А.В., Макаров Д.А. // Кинетика и катализ. 2019. T. 60. № 1. С. 66. (Esipovich A.L., Belousov A.S., Kanakov E.A., Mironova V.Y., Rogozhin A.E., Danov S.M., Vorotyntsev A.V., Makarov D.A. // Kinet. Catal. 2019. V. 60. P. 62.)
  24. Taramasso M., Perego G., Notari B. US Patent 4410501, 1983.
  25. Langhendries G., De Vos D.E., Sels B.F., Vankelecom I., Jacobs P.A., Baron G.V. // Clean Prod. Proc. 1998. V. 1. P. 21.
  26. Sheldon R.A., Arends I.W.C.E., Lempers H.E.B. // Catal. Today. 1998. V. 41. № 4. P. 387.
  27. Clerici M.G. TS-1 and propylene oxide, 20 years later / DGMK/SCI Conference “Oxidation and Functionalization: Classical and Alternative Routes and Sources”. Milan, Italy, October 12–14, 2005.
  28. US Patent 4410501. Chem. Abstr. 1983. V. 95. 206272.
  29. US Patent 4701428. Chem. Abstr. 1987. V. 106. 158282.
  30. Liang X., Mi Zh., Wu Yu., Wang L., Xing E. // React. Kinet. Catal. Lett. 2003. V. 80. № 2. P. 207.
  31. Wu G., Wang Ya., Wang L., Feng W., Shi H., Lin Yi, Zhang T., Jin X., Wang Sh., Wu X., Yao P. // Chem. Eng. J. 2013. P. 215. P. 306.
  32. Gao H., Lu G., Suo J., Li Sh. // Appl. Catal. A: Gen. 1996. V. 138. P. 27.
  33. Xu Ch.-H., Lü Sh.-J., Deng G.-Yi., Qiu F.-L. // Chin. J. Chem. 2000. V. 18. № 4. P. 576.
  34. Nakagawa Yo., Mizuno N. // Inorg. Chem. 2007. V. 46. P. 1727.
  35. Al-Ajlouni A.M., Espenson J.H. // J. Org. Chem. 1996. V. 61. № 12. P. 3969.
  36. Wróblewska A., Wajzberg J., Fajdek A., Milchert Eu. // J. Hazard. Mater. 2009. V. 163. № 2–3. P. 1303.
  37. Khouw C.B., Dartt C.B., Labinger J.A., Davis M.E. // J. Catal. 1994. V. 149. № 1. P. 195.
  38. Jiao W., He Yue, Li J., Wang J., Tatsumi T., Fan W. // Appl. Catal. A: Gen. 2015. V. 491. P. 78.
  39. Nie X., Ji X., Chen Yo., Guo X., Song Ch. // J. Mol. Catal. 2017. V. 441. P. 150.
  40. Solé-Daura A., Zhang T., Fouilloux H., Robert C., Thomas C.M., Chamoreau L.-M., Carbó J.J., Proust A., Guillemot G., Poblet J.M. // ACS Catal. 2020. V. 10. № 8. P. 4737.
  41. Aquino A., Korup O., Horn R. // Ind. Eng. Chem. Res. 2023. V. 62. № 7. P. 3098.
  42. Russo V., Tesser R., Santacesaria E., Di Serio M. // Ind. Eng. Chem. Res. 2014. V. 53. P. 6274.
  43. Ayla E.Z., Potts D.S., Bregante D.T., Flaherty D.W. // ACS Catal. 2021. V. 11. P. 139.
  44. Shin S.B., Chadwick D. // Ind. Eng. Chem. Res. 2010. V. 49. P. 8125.
  45. Woodard S.S., Finn M.G., Sharpless K.B. // J. Am. Chem. Soc. 1991. V. 113. № 10. P. 6.
  46. Finn M.G., Sharpless K.B. // J. Am. Chem. Soc. 1991. V. 113. P. 113.
  47. Finn M.G., Sharpless K.B. Asymmetric Synthesis. Chapter 8: On the Mechanism of Asymmetric Epoxidation with Titanium – Tartrate Catalysts. New-York: Academic press, Inc., 1985. V. 5. P. 247.
  48. Пастухова Ж.Ю., Насыбулин Ф.Д., Сулимов А.В., Флид В.Р., Брук Л.Г. // Тонкие химические технологии. 2016. Т. 11. № 4. С. 26. (Pastukhova Zh.Yu., Nasybulin F.D., Sulimov A.V., Flid V.R., Bruk L.G. // Fine Chem. Technol. 2016. V. 11. № 4. P. 26.)
  49. Пастухова Ж.Ю., Левитин В.В., Кацман Е.А., Брук Л.Г. // Кинетика и катализ. 2021. Т. 62. № 5. С. 551. (Pastukhova Zh.Yu., Levitin V.V., Katsman E.A., Bruk L.G. // Kinet. Catal. 2021. V. 62. № 5. P. 604.)
  50. Темкин О.Н., Брук Л.Г., Зейгарник А.В. // Кинетика и катализ. 1993. Т. 34. С. 445. (Temkin O.N., Bruk L.G., Zeigarnik A.V. // Kinet. Catal. 1993. V. 34. P. 387.)
  51. Kuz’micheva G.M., Svetogorov R.D., Bruk L.G., Pastukhova Zh.Yu., Мarkova E.B., Zhukova A.I., Chuklina S.G., Dorokhov A.V. // Micropor. Mezopor. Mater. 2021. V. 326. P. 111377.
  52. Kuz’micheva G.M., Chernyshev V., Kravchenko G., Pirutko L., Khramov E., Bruk L.G., Pastukhova Z., Kustov A., Kustov L.M., Markova E. // Dalton Trans. 2022. V. 51. P. 3439.
  53. Антоновский В.Л., Бузланова М.М. Аналитическая химия органических пероксидных соединений. Москва: Химия, 1978. С. 309.
  54. Кацман Е.А., Беренблюм А.С. Учебно-методическое пособие. Москва: ИПЦ МИТХТ им. М.В. Ломоносова, 2010. С. 15.
  55. Clerici M.G. // Appl. Catal. 1991. V. 68. P. 249.
  56. Clerici M.G., Ingallina P. // J. Catal. 1993. V. 140. P. 71.
  57. Neurock M., Manzer L.E. // Chem. Commun. 1996. P. 1133.
  58. Oyama S.T. Mechanisms in Homogeneous and Heterogeneous Epoxidation Catalysis. The Netherlands: Elsevier, 2008.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Scheme 1

Download (4KB)
3. Fig. 1. Kinetic curves of changes in the concentration of allyl chloride (AC) and epichlorohydrin (ECH) (a) and UK peroxide (b) during the course of the state.

Download (46KB)
4. Fig. 2. Dependence of the rate of formation of epichlorohydrin on temperature (С0АХ = 2.38 mol/l; С0ПВ = 2.38 mol/l).

Download (21KB)
5. Fig. 3. The effect of changing the initial concentration of allyl chloride on its current concentration (a) and on the formation of epichlorohydrin (b) (С0ПВ = 2.38 mol/l).

Download (37KB)
6. Fig. 4. The effect of changing the initial concentration of hydrogen peroxide on its current concentration (a) and on the formation of epichlorohydrin (b) (С0АХ = 2.37 mol/l).

Download (38KB)
7. Fig. 5. The effect of adding epichlorohydrin to the initial mixture on the consumption of allyl chloride and the formation of epichlorohydrin (a), on the consumption of hydrogen peroxide (b) (С0АХ = 2.35 mol/l; С0ПВ = 2.37 mol/l).

Download (42KB)
8. Fig. 6. Effect of water concentration on the formation of epichlorohydrin (С0АХ = 1.00 mol/l; С0ПВ = 1.00 mol/l; С0H2O = 4.12 mol/l; 0.00 mol/l – no additional water was added to the system, the water concentration at the initial moment of time was equal to С0H2O; 3.99 mol/l – 3.99 mol/l of water was added to С0H2O; 8.20 mol/l – 8.20 mol/l of water was added to С0H2O).

Download (16KB)
9. Fig. 7. Correspondence between the calculated according to model 8 and the experimentally obtained concentrations of hydrogen peroxide for all experiments (the epoxidation reaction of allyl chloride).

Download (23KB)
10. Scheme

Download (16KB)
11. Scheme 2

Download (20KB)
12. Scheme 1. Hydroperoxide mechanism of epoxidation on titanium-containing catalysts.

Download (5KB)
13. Scheme 2. Proposed mechanism (Eley–Rideal model) for the epoxidation of allyl chloride on catalyst TS-1 (a fragment of the catalyst structure is shown, including the active center and associated groups).

Download (12KB)