Electrocatalysts based on platinized titanium dioxide doped with ruthenium for hydrogen and carbon monoxide potentiometric sensors
- Autores: Belmesov A.A.1, Shmygleva L.V.1, Romanova N.V.1, Galin M.Z.1, Levchenko A.V.1
-
Afiliações:
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
- Edição: Volume 60, Nº 9 (2024)
- Páginas: 591-604
- Seção: Articles
- URL: https://transsyst.ru/0424-8570/article/view/684856
- DOI: https://doi.org/10.31857/S0424857024090018
- EDN: https://elibrary.ru/OIILFE
- ID: 684856
Citar
Resumo
In this work, electrocatalysts based on platinized TiO2(Ru) oxides with different ruthenium contents were studied for usage as a working electrode for solid-state potentiometric sensors for H2 and CO. Increasing the ruthenium content does not affect the particle size of platinum, but reduces its content in the metallic state. The work presents data from X-ray phase and X-ray fluorescence analyzes and scanning electron microscopy. The resulting electrocatalysts were studied as working electrode materials in hydrogen and carbon monoxide sensors with concentrations in the air flow from 1 to 50 000 ppm. The characteristics of the sensors are affected by the composition of the oxide carrier and its structure. For practical usage, the electrocatalysts with a rutile structure are recommended; the ruthenium content is determined by the analyzed range of CO concentrations.
Texto integral

Sobre autores
A. Belmesov
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
Autor responsável pela correspondência
Email: belmesovaa@mail.ru
Rússia, Chernogolovka
L. Shmygleva
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
Email: belmesovaa@mail.ru
Rússia, Chernogolovka
N. Romanova
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
Email: belmesovaa@mail.ru
Rússia, Chernogolovka
M. Galin
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
Email: belmesovaa@mail.ru
Rússia, Chernogolovka
A. Levchenko
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
Email: belmesovaa@mail.ru
Rússia, Chernogolovka
Bibliografia
- Филиппов, С.П., Ярославцев, А.Б. Водородная энергетика: перспективы развития и материалы. Успехи химии. 2021. Т. 90. С. 627. [Filippov, S.P. and Yaroslavtsev, A.B., Hydrogen energy: development prospects and materials, Russ. Chem. Rev., 2021, vol. 90, p. 627.]
- Yukesh Kannah, R., Kavitha, S., Preethi, Parthiba Karthikeyan, O., Kumar, G., Dai-Viet, N.V., and Rajesh Banu, J., Techno-economic assessment of various hydrogen production methods – A review, Bioresour. Technol., 2021, vol. 319, p. 124175.
- Бельмесов, А.А., Баранов, А.А., Левченко, А.В. Анодные электрокатализаторы для топливных элементов на основе Pt/). Электрохимия. 2018. Т. 54. С. 570. [Belmesov, A.A., Baranov, A.A., and Levchenko, A.V., Anodic electrocatalysts for fuel cells based on Pt/, Russ. J. Electrochem., 2018, vol. 54, p. 493.]
- Goto, T., Hyodo, T., Ueda, T., Kamada, K., Kaneyasu, K., and Shimizu, Y., CO-sensing properties of potentiometric gas sensors using an anion-conducting polymer electrolyte and Au-loaded metal oxide electrodes, Electrochim. Acta, 2015, vol. 166, p. 232.
- Hyodo, T., Goto, T., Ueda, T., Kaneyasu, K., and Shimizu, Y., Potentiometric carbon monoxide sensors using an anion-conducting polymer electrolyte and Au-loaded electrodes , J. Electrochem. Soc., 2016, vol. 163, p. B300.
- Hyodo, T., Takamori, M., Goto, T., Ueda, T., and Shimizu, Y., Potentiometric CO sensors using anion-conducting polymer electrolyte: Effects of the kinds of noble metal-loaded metal oxides as sensing-electrode materials on CO-sensing properties, Sensors Actuators, B Chem., 2019, vol. 287, p. 42.
- Formo, E., Peng, Z., Lee, E., Lu, X., Yang, H., and Xia, Y., Direct Oxidation of methanol on Pt nanostructures supported on electrospun nanofibers of anatase, J. Phys. Chem. C, 2008, vol. 112, p. 9970.
- Ahmad, W., Park, E., Lee, H., Kim, J.Y., Kim, B.C., Jurng, J., and Oh, Y., Defective domain control of support in Pt/ for room temperature formaldehyde (HCHO) remediation, Appl. Surf. Sci., 2021, vol. 538, p. 147504.
- Wang, C., Yang, J., Li, J., Luo, C., Xu, X., and Qian, F., Solid-state electrochemical hydrogen sensors: A review, Int. J. Hydrogen Energy, 2023, vol. 48, p. 31377.
- Liu, X., Chen, J., Liu, G., Zhang, L., Zhang, H., and Yi, B., Enhanced long-term durability of proton exchange membrane fuel cell cathode by employing Pt / TiO 2 / C catalysts, J. Power Sources, 2010, vol. 195, p. 4098.
- Chhina, H., Campbell, S., and Kesler, O., Ex situ Evaluation of tungsten oxide as a catalyst support for PEMFCs, J. Electrochem. Soc., 2007, vol. 154, p. B533.
- Mahajan, S. and Jagtap, S., Metal-oxide semiconductors for carbon monoxide (CO) gas sensing: A review, Appl. Mater. Today, 2020, vol. 18, p. 100483.
- Lin, R., Cao, C., Zhang, H., Huang, H., and Ma, J., Electro-catalytic activity of enhanced CO tolerant cerium-promoted Pt/C catalyst for PEM fuel cell anode, Int. J. Hydrogen Energy, 2012, vol. 37, p. 4648.
- Spasojević, M., Marković, D., and Spasojević, M., Mathematical model of electrocatalysis of methanol oxidation at the mixture of nanocrystals of platinum and ruthenium dioxide, Rev. Roum. Chim., 2022, vol. 67, p. 473.
- Gurrola, M.P., Guerra-Balcázar, M., Álvarez-Contreras, L., Nava, R., Ledesma-García, J., and Arriaga, L.G., High surface electrochemical support based on Sb-doped SnO2, J. Power Sources, 2013, vol. 243, p. 826.
- Leonova, L., Shmygleva, L., Ukshe, A., Levchenko, A., Chub, A., and Dobrovolsky, Y., Solid-state hydrogen sensors based on calixarene—12-phosphatotungstic acid composite electrolytes, Sensors Actuators B Chem., 2016, vol. 230, p. 470.
- Бельмесов, А.А., Левченко, А.В., Паланкоев, Т.А., Леонова, Л.С., Укше, А.Е., Чикин, А.И., Букун, Н.Г. Электрохимические сенсоры на основе платинированного . Электрохимия. 2013. Т. 49. С. 926. [Bel’mesov, A.A., Levchenko, A.V., Palankoev, T.A., Leonova, L.S., Ukshe, A.E., Chikin, A.I., and Bukun, N.G., Electrochemical sensors based on platinized , Russ. J. Electrochem., 2013, vol. 49, p. 831.]
- Colomer, M.T. and Jurado, J.R., Structural, microstructural, and electrical transport properties of − ceramic materials obtained by polymeric sol−gel route, Chem. Mater., 2000, vol. 12, p. 923.
- Фролова, Л.А., Добровольский, Ю.А. Платиновые электрокатализаторы на основе оксидных носителей для водородных и метанольных топливных элементов. Изв. Акад. Наук, Сер. Хим., 2011. Т. 60. С. 1076. [Frolova, L.A. and Dobrovolsky, Y.A., Platinum electrocatalysts based on oxide supports for hydrogen and methanol fuel cells, Russ. Chem. Bull., 2011, vol. 60, p. 1101.]
- Yin, Y., Huang, C., Luo, X., and Xu, B., Iron behavior during the continuous phase transition of iron-doped titanium dioxide determined via high-temperature in-situ X-ray diffraction, rietveld refinement, and density functional theory studies, J. Mater. Res. Technol., 2023, vol. 23, p. 2426.
- Ferreira, H.S., Ferreira, H.S., da Silva, M.V.S., da Rocha, M. da G.C., Bargiela, P., Rangel, M. do C., Eguiluz, K.I.B., and Salazar-Banda, G.R., Improved electrocatalytic activity of Pt supported onto Fe-doped toward ethanol oxidation in acid media, Mater. Chem. Phys., 2020, vol. 245, p. 122753.
- Moradi, M., Khorasheh, F., and Larimi, A., Pt nanoparticles decorated Bi-doped as an efficient photocatalyst for photo-reduction into , Sol. Energy, 2020, vol. 211, p. 100.
- Wetchakun, N., Incessungvorn, B., Wetchakun, K., and Phanichphant, S., Influence of calcination temperature on anatase to rutile phase transformation in nanoparticles synthesized by the modified sol–gel method, Mater. Lett., 2012, vol. 82, p. 195.
- Зюбин, А.С., Зюбина, Т.С., Добровольский, Ю.А., Бельмесов, А.А., Волохов, В.М. Наночастицы платины на различных типах поверхности диоксида титана: квантово-химическое моделирование. Журн. неорган. химии. 2014. Т. 59. С. 1038. [Zyubin, A.S., Zyubina, T.S., Dobrovol’skii, Y.A., Bel’mesov, A.A., and Volokhov, V.M., Platinum nanoparticles on different types of titanium dioxide surface: A quantum-chemical modeling, Russ. J. Inorg. Chem., 2014, vol. 59, p. 816.]
- Герасимова, Е.В., Букун, Н.Г., Добровольский, Ю.А. Электрокаталитические свойства катализаторов на основе углеродных нановолокон с различным содержанием платины. Изв. АН. Сер. Хим. 2011. Т. 60. С. 1021. [Gerasimova, E. V., Bukun, N.G., and Dobrovolsky, Y.A., Electrocatalytic properties of the catalysts based on carbon nanofibers with various platinum contents, Russ. Chem. Bull., 2011, vol. 60, p. 1045.]
- Jacob, K.T. and Subramanian, R., Phase Diagram for the System - in air, J. Phase Equilibria Diffus., 2008, vol. 29, p. 136.
- Volodin, A.A., Belmesov, A.A., Murzin, V.B., Fursikov, p. V., Zolotarenko, A.D., and Tarasov, B.P., Electro-conductive composites based on titania and carbon nanotubes, Inorg. Mater., 2013, vol. 49, p. 656.
- Treglazov, I., Leonova, L., Dobrovolsky, Y., Ryabov, A., Vakulenko, A., and Vassiliev, S., Electrocatalytic effects in gas sensors based on low-temperature superprotonics, Sensors Actuators B Chem., 2005, vol. 106, p. 164.
- Shmygleva, L.V., Chub, A.V., and Leonova, L.S., Solid-state potentiometric sensors with platinized SnO2(Sb) and calixarene/phosphotungstic acid composite electrolyte selective to CO in hydrogen-air atmosphere, Sensors Actuators B Chem., 2021, vol. 349, p. 130823.
- Шмыглева, Л.В., Старков, А.В., Леонова, Л.С. Влияние состава материала рабочего электрода на основе Pt/(Sb) на свойства сенсоров на водород и монооксид углерода. Электрохимия. 2023. Т. 59. С. 333. [Shmygleva, L.V., Starkov, A.V., and Leonova, L.S., The Effect of the working electrode material based on Pt/(Sb) on the properties of hydrogen and carbon-monoxide sensors, Russ. J. Electrochem., 2023, vol. 59. p. 441.]
- Укше, Е.А., Леонова, Л.С. Потенциометрический водородный сенсор с протонным твердым электролитом. Электрохимия. 2011. Т. 92. С. 1427. [Ukshe, E. and Leonova, L., Potentiometric hydrogen sensors with proton conducting solid electrolytes, Sov. Electrochem., 1992, vol. 28, p. 1166.]
- Левченко, А.В., Укше, А.Е., Федотова, А.А. Кинетика процессов на границе /Pt, в зависимости от содержания платины на электроде. Электрохимия. 2011. Т. 46. С. 776. [Levchenko, A. V., Ukshe, A.E., and Fedotova, A.A., Kinetics of processes occurring at a /Pt, interface depending on the platinum content on the electrode, Russ. J. Electrochem., 2011, vol. 47, p. 726.]
- Gonzalez Szwacki, N., Fabrykiewicz, P., Sosnowska, I., Fauth, F., Suard, E., and Przeniosło, R., Orthorhombic symmetry and anisotropic properties of rutile , J. Phys. Chem. C, 2023, vol. 127, p. 19240.
- Arblaster, J.W., Crystallographic Properties of Ruthenium, Platin. Met. Rev., 1997, vol. 41, p. 12.
- Vovk, E.I., Kalinkin, A. V., Smirnov, M.Y., Klembovskii, I.O., and Bukhtiyarov, V.I., XPS study of stability and reactivity of oxidized Pt nanoparticles supported on , J. Phys. Chem. C, 2017, vol. 121, p. 17297.
- Tiernan, M.J. and Finlayson, O.E., Effects of ceria on the combustion activity and surface properties of Pt/ catalysts, Appl. Catal. B Environ., 1998, vol. 19, p. 23.
- Kozlova, E.A., Lyubina, T.P., Nasalevich, M.A., Vorontsov, A.V., Miller, A.V., Kaichev, V.V., and Parmon, V.N., Influence of the method of platinum deposition on activity and stability of Pt/ photocatalysts in the photocatalytic oxidation of dimethyl methylphosphonate, Catal. Commun., 2011, vol. 12, p. 597.
- Smirnov, M.Y., Kalinkin, A. V., and Bukhtiyarov, V.I., X-ray photoelectron spectroscopic study of the interaction of supported metal catalysts with , J. Struct. Chem., 2007, vol. 48, p. 1053.
- Vikrant, K., Weon, S., Kim, K.-H., and Sillanpää, M., Platinized titanium dioxide (Pt/) as a multi-functional catalyst for thermocatalysis, photocatalysis, and photothermal catalysis for removing air pollutants, Appl. Mater. Today, 2021, vol. 23, p. 100993.
- Zanfoni, N., Avril, L., Imhoff, L., Domenichini, B., and Bourgeois, S., Direct liquid injection chemical vapor deposition of platinum doped cerium oxide thin films, Thin Solid Films, 2015, vol. 589, p. 246.
- Kibis, L.S., Svintsitskiy, D.A., Stadnichenko, A.I., Slavinskaya, E.M., Romanenko, A. V., Fedorova, E.A., Stonkus, O.A., Svetlichnyi, V.A., Fakhrutdinova, E.D., Vorokhta, M., Šmíd, B., Doronkin, D.E., Marchuk, V., Grunwaldt, J.-D., and Boronin, A.I., In situ probing of Pt/ activity in low-temperature ammonia oxidation, Catal. Sci. Technol., 2021, vol. 11, p. 250.
- Stakheev, A.Y., Shulga, Y.M., Gaidai, N.A., Telegina, N.S., Tkachenko, O.P., Kustov, L.M., and Minachev, K.M., New evidence for the electronic nature of the strong metal-support interaction effect over a Pt/ hydrogenation catalyst, Mendeleev Commun., 2001, vol. 11, p. 186.
- Colmenares, J.C., Magdziarz, A., Aramendia, M.A., Marinas, A., Marinas, J.M., Urbano, F.J., and Navio, J.A., Influence of the strong metal support interaction effect (SMSI) of Pt/ and Pd/ systems in the photocatalytic biohydrogen production from glucose solution, Catal. Commun., 2011, vol. 16, p. 1.
- Jiao, J., Wei, Y., Chi, K., Zhao, Z., Duan, A., Liu, J., Jiang, G., Wang, Y., Wang, X., Han, C., et al., Platinum nanoparticles supported on photonic crystals as highly active photocatalyst for the reduction of in the presence of water, Energy Technol., 2017, vol. 5, p. 877.
- Huang, H. and Leung, D.Y.C., Complete elimination of indoor formaldehyde over supported Pt catalysts with extremely low Pt content at ambient temperature, J. Catal., 2011, vol. 280, p. 60.
- Hyodo, T., Goto, T., Takamori, M., Ueda, T., and Shimizu, Y., Effects of Pt loading onto electrodes on CO-sensing properties and mechanism of potentiometric gas sensors utilizing an anion-conducting polymer electrolyte, Sensors Actuators B Chem., 2019, vol. 300, p. 127041.
- Hyodo, T., Ishibashi, C., Matsuo, K., Kaneyasu, K., Yanagi, H., and Shimizu, Y., CO and CO2 sensing properties of electrochemical gas sensors using an anion-conducting polymer as an electrolyte, Electrochim. Acta, 2012, vol. 82, p. 19.
- Ramaiyan, K.P. and Mukundan, R., Editors’ choice—review—recent advances in mixed potential sensors, J. Electrochem. Soc., 2020, vol. 167, p. 037547.
- Dobrovolsky, Y., Leonova, L., and Vakulenko, A., Thermodynamic equilibria and kinetic reversibility of the solid electrolyte/electron conductor/gas boundary at low temperature, Solid State Ionics, 1996, vol. 86–88, p. 1017.
- Ahmad Fauzi, A.S., Hamidah, N.L., Sato, S., Shintani, M., Putri, G.K., Kitamura, S., Hatakeyama, K., Quitain, A.T., and Kida, T., Carbon-based potentiometric hydrogen sensor using a proton conducting graphene oxide membrane coupled with a WO3 sensing electrode, Sensors Actuators B Chem., 2020, vol. 323, p. 128678.
- Bouchet, R., Siebert, E., and Vitter, G., Polybenzimidazole-based hydrogen sensors II. Effect of the electrode preparation, J. Electrochem. Soc., 2000, vol. 147, p. 3548.
- Rosini, S. and Siebert, E., Electrochemical sensors for detection of hydrogen in air: model of the non-Nernstian potentiometric response of platinum gas diffusion electrodes, Electrochim. Acta, 2005, vol. 50, p. 2943.
- Maskell, W.C., Inorganic solid state chemically sensitive devices: electrochemical oxygen gas sensors, J. Phys. E., 1987, vol. 20, p. 1156.
- Molochas, C. and Tsiakaras, P., Carbon monoxide tolerant pt-based electrocatalysts for -PEMFC applications: Current Progress and Challenges, Catalysts, 2021, vol. 11, p. 1127.
- Ye, S., CO-tolerant catalysts. In PEM Fuel Cell Electrocatalysts and Catalyst Layers. Springer London, р. 759–834.
Arquivos suplementares
