High-Energy Events Registration System of Space-Based Gamma-Ray Telescope

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

We present a description of the design and main results obtained from measurements with a prototype of the high-energy event registration system of the space-based gamma-ray telescope on the positron beam of the S-25R "Pakhra" synchrotron at the Lebedev Physical Institute of the Russian Academy of Sciences. The prototype includes an anticoincidence and time-of-flight systems, a pre-shower detector and a calorimeter based on BC-408, BGO and CsI(Tl) scintillators with appropriate front-end and processing electronics. Silicon photomultiplier matrices were used as photosensors in all scintillation detectors of the prototype.

Sobre autores

A. Arkhangelsky

National Research Nuclear University MEPhI

Email: AIArkhangelskij@mephi.ru
Moscow, Russia

I. Arkhangelskaya

National Research Nuclear University MEPhI

Moscow, Russia

A. Bakaldin

Federal Scientific Center «Research Institute for System Studies of National Research Centre «Kurchatov Institute»

Moscow, Russia

V. Baskov

P.N. Lebedev Physical Institute of the Russian Academy of Sciences

Moscow, Russia

S. Voronov

National Research Nuclear University MEPhI

Moscow, Russia

M. Korotkov

National Research Nuclear University MEPhI

Moscow, Russia

A. Lvov

P.N. Lebedev Physical Institute of the Russian Academy of Sciences

Moscow, Russia

N. Pappe

P.N. Lebedev Physical Institute of the Russian Academy of Sciences

Moscow, Russia

S. Suchkov

P.N. Lebedev Physical Institute of the Russian Academy of Sciences

Moscow, Russia

Yu. Yurkin

National Research Nuclear University MEPhI

Moscow, Russia

Bibliografia

  1. Архангельский А.И., Гальпер А.М., Архангельская И.В. и др. // Изв. РАН. Сер. физ. 2019. Т. 83. №5. С. 684
  2. Архангельский А.И., Гальпер А.М., Архангельская И.В. и др. // Изв. РАН. Сер. физ. 2021. Т. 85. №8. С. 1160.
  3. Topchiev N.P., Galper A.M., Arkhangelskaja I.V. et al. // Adv. Space Res. 2022. V. 70. P. 2773.
  4. Leonov A.A., Galper A.M., Topchiev N.P. et al. // Adv. Space Res. 2019. V. 63. P. 3420.
  5. https://www.onsemi.com/pub/collateral/and9772-d.pdf.
  6. Arkhangelskiy A.I., Galper A.M., Arkhangelskaja I.V. et al. // J. Phys. Conf. Ser. 2019. V. 1390. Art. No. 012130.
  7. Сучков С.И., Архангельский А.И., Басков В.А. и др. // ПТЭ. 2021. Т. 34. №5. С. 34
  8. Алексеев В.И., Архангельский А.И., Басков В.А. и др. // ПТЭ. 2023. Т. 59. №6. С. 59
  9. Arkhangelskiy A.I., Galper A.M., Arkhangelskaja I.V. et al. // Phys. Atom. Nucl. 2023. V. 86. No. 5. P. 810.
  10. Arkhangelskiy A.I., Galper A.M., Arkhangelskaja I.V. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 7. P. 1014.
  11. Alekseev V.I., Baskov V.A., Dronov V.A. et al. // J. Phys. Conf. Ser. 2019. V. 1390. Art. No. 012127.
  12. Arkhangelskiy A.I., Galper A.M., Arkhangelskaja I.V. et al. // Phys. Atom. Nucl. 2020. V. 83. No. 2. P. 252.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025