On the possibility of experiments on the excitation of artificial ultra-low and extra-low frequency emissions in the ionosphere by the FENICS installation on the Kola peninsula
- Autores: Pilipenko V.A.1,2, Mazur N.G.1, Fedorov E.N.1, Shevtsov A.N.3
 - 
							Afiliações: 
							
- Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences
 - Institute of Space Research of the Russian Academy of Sciences
 - Institute of Geology of the Kola Scientific Center of the Russian Academy of Sciences
 
 - Edição: Volume 88, Nº 3 (2024)
 - Páginas: 386-394
 - Seção: Physics of Auroral Phenomena
 - URL: https://transsyst.ru/0367-6765/article/view/654726
 - DOI: https://doi.org/10.31857/S0367676524030079
 - EDN: https://elibrary.ru/QMPZYA
 - ID: 654726
 
Citar
Texto integral
Resumo
A numerical model has been developed to calculate the electromagnetic response in the ionosphere from grounded ultra-low-frequency transmitters of finite length L. Such megatransmitters are the ZEVS installation with a carrier frequency of 82 Hz and the FENICS installation, which can generate artificial emissions at frequencies from fractions of a Hz to a few hundreds of Hz. The amplitude of radiation excited in the upper ionosphere by a grounded horizontal current suspended above a high-resistance earth’s surface has been calculated. The altitude profile of the plasma parameters was reconstructed using the IRI ionospheric model. For the ZEVS transmitter (L = 60 km) powered by a current of 200 A, the simulated amplitudes of the electromagnetic response in the nighttime ionosphere can reach ~60 μV/m, which was confirmed by observations on the DEMETER satellite. According to calculations, the FENICS facility (L = 100 km), powered by a current of 100 A, can generate radiation in the nighttime upper ionosphere with a frequency of 10—100 Hz and an amplitude of up to ~60—70 μV/m. The FENICS facility can be used to excite artificial Pc1 pulsations that could be detected on low-Earth-orbit satellites (e.g., CSES). To create pulsations in the nighttime ionosphere at a frequency of 0.5 Hz with the amplitudes of the magnetic component >1 pT and the electric component >10 μV/m, the current in the FENICS antenna is to be >100 A.
Texto integral
Sobre autores
V. Pilipenko
Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences; Institute of Space Research of the Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: space.soliton@gmail.com
				                					                																			                												                	Rússia, 							Moscow; Moscow						
N. Mazur
Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences
														Email: space.soliton@gmail.com
				                					                																			                												                	Rússia, 							Moscow						
E. Fedorov
Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences
														Email: space.soliton@gmail.com
				                					                																			                												                	Rússia, 							Moscow						
A. Shevtsov
Institute of Geology of the Kola Scientific Center of the Russian Academy of Sciences
														Email: space.soliton@gmail.com
				                					                																			                												                	Rússia, 							Apatity						
Bibliografia
- Rothkaehl H., Parrot M. // J. Atm. Solar-Terr. Phys. 2005. V. 67. P. 821.
 - Жамалетдинов А.А., Шевцов А.Н., Велихов Е.П. и др. // Изв. РАН. Физ. атм. и океана. 2015. T. 51. C. 826; Zhamaletdinov A.A., Shevtsov A.N., Velikhov E.P. et al. // Izv. Atm. Ocean. Phys. 2015. V. 51. P. 826.
 - Любчич В.А. // Изв. РАН. Сер. физ. 2021. Т. 85. № 3. С. 378; Lyubchich V.A. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 3. P. 268.
 - Nemec F., Parrot M., Santolik O. // J. Geophys. Res. 2015. V.120. P. 8954.
 - Пилипенко В.А., Федоров Е.Н., Мазур Н.Г., Климов С.И. // Солн.-земн. физ. 2021. Т. 7. № 3. С. 3; Pilipenko V.A., Fedorov E.N., Mazur N.G., Klimov S.I. // Solar-Terr. Phys. 2021. V. 7. No. 3. P. 105.
 - Терещенко Е.Д., Терещенко П.Е. // ЖТФ. 2017. Т. 87. C. 453; Tereshenko E.D., Tereshenko P.E. // J. Tech. Phys. 2017. V. 87. P. 453.
 - Терещенко Е.Д., Терещенко П.Е., Сидоренко А.Е. и др. // ЖТФ. 2018. Т. 88. № 6. С. 907; Tereshchenko E.D., Tereshchenko P.E., Sidorenko A.E. et al. // J. Tech. Phys. 2018. V. 88. No. 6. P. 907.
 - Ермакова Е.Н., Рябов А.В., Котик Д.С. // Изв. вузов. Радиофиз. 2021. Т. 64. № 3. С. 163; Ermakova E.N., Ryabov A.V., Kotik D.S. // Radiophys. Quant. Electron. 2021. V. 64. No. 3. P. 163.
 - Fedorov E.N., Mazur N.G., Pilipenko V.A., Vakhnina V.V. // Radio Sci. 2020. V. 55. Art. No. e2019RS006943.
 - Fedorov E.N., Mazur N.G., Pilipenko V.A. // J. Geophys. Res. 2021. V. 126. Art. No. e2021JA029659.
 - Федоров Е.Н., Мазур Н.Г., Пилипенко В.А. // Изв. вузов. Радиофиз. 2022. Т. 65. № 9. С. 697; Fedorov E.N., Mazur N.G., Pilipenko V.A. // Radiophys. Quant. Electron. 2023. V. 65. No. 9. P. 697.
 - Baños A. Dipole radiation in the presence of a conducting half-space. N.Y.: Pergamon, 1966. 263 p.
 - King R.W.P., Smith G.S., Owens M., Wu T.T. Antennas in matter. Fundamentals, theory and applications. Ch. 11. Cambridge: The MIT Press, 1981.
 - Собчаков Л.А., Астахова Н.Л., Поляков С.В. // Изв. вузов. Радиофиз. 2003. Т. 46. № 12. С. 1027; Sobchakov L.A., Astakhova N.L., Polyakov S.V. // Radiophys. Quant. Electron. 2003. V. 46. No. 12. P. 1027.
 - Гинзбург В.Л. Распространение электромагнитных волн в плазме. М.: Наука, 1967. 685 с; Ginzburg V.L. Propagation of radiowaves in plasm. Pergamon Press, 1970. 615 p.
 - Pilipenko V.A., Parrot M., Fedorov E.N., Mazur N.G. // J. Geophys. Res. 2019. V. 124. No. 10. P. 8066.
 - Беляев П.П., Поляков С.В., Ермакова Е.Н. и др. // Изв. вузов. Радиофиз. 2002. Т. 45. № 2. С. 156; Belyaev P.P., Polyakov S.V., Ermakova E.N. et al. // Radiophys. Quant. Electron. 2002. V. 45. No. 2. P. 156.
 - Грач В.С., Демехов А.Г. // Изв. вузов. Радиофиз. 2017. Т. 60. № 12. С. 1052; Grach V.S., Demekhov A.G. // Radiophys. Quant. Electron. 2017. V. 60. No. 12. P. 1052.
 - Guo Z., Fang H., Honary F. // Universe. 2021. V. 7. P. 29.
 - Пилипенко В.А., Полозова Т.Л., Энгебретсон М. // Косм. иссл. 2012. Т. 50. № 5. C. 355; Pilipenko V.A., Polozova T.L., Engebretson М. // Cosmic Res. 2012. V. 50. No. 5. P. 355.
 - Boerner D.E. // Surv. Geophys. 1992. V. 13. P. 435.
 - Ermakova E.N., Kotik D.S., Polyakov S.V. et al. // J. Geophys. Res. 2006. P. 111.
 - Поляков С.В. // Изв. вузов. Радиофиз. 2008. Т. 51. № 12. С. 1026; Polyakov S.V. // Radiophys. Quant. Electron. 2008. V. 51. No. 12. P. 1026.
 - Пилипенко В.А. // В сб. “Триггерные эффекты в геосистемах”. М.: ГЕОС, 2013. C. 318.
 - Гульельми А.В., Зотов О.В. // Физика Земли. 2012. № 6. С. 23; Guglielmi A.V., Zotov O.V. // Phys. Solid Earth. 2012. No. 6. P. 23.
 - Diego P., Huang J., Piersanti M. et al. // Instruments. 2021. V. 5. No. 1. P. 1.
 - Dudkin F., Korepanov V., Dudkin D. et al. // Geophys. Res. Lett. 2015. V. 42. P. 5686.
 - Wu J., Wang Z., Zhang J. et al. // Earth Planets Space. 2023. No. 1. P. 1.
 
Arquivos suplementares
				
			
						
						
					
						
						
									






