Conversion of selective characteristics of electrically controlled chirped multilayer inhomogeneous diffraction structures based on photopolymerizing compositions with nematic liquid crystals

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We developed the analytical model of optical radiation diffraction on chirped multilayer inhomogeneous diffraction structures formed by the holographic method in photopolymerizing compositions with nematic liquid crystals having smooth optical heterogeneity in layer thickness. By numerical calculation, it was shown that using the chirping method it is possible to multiply the angular and spectral characteristics of multilayer inhomogeneous holographic diffraction structures formed in photopolymerizing compositions with nematic liquid crystals.

Sobre autores

S. Sharangovich

Tomsk State University of Control and Radioelectronics Systems

Tomsk, Russia

V. Dolgirev

Tomsk State University of Control and Radioelectronics Systems

Tomsk, Russia

D. Rastrygin

Tomsk State University of Control and Radioelectronics Systems

Email: gg9dragon9gg@gmail.com
Tomsk, Russia

Bibliografia

  1. Шарангович С.Н., Долгирев В.О., Растрыгин Д.С. // Изв. РАН. Сер. физ. 2024. Т. 88. № 1. С. 11
  2. Sharangovich S.N., Dolgirev V.O., Rastrygin D.S. // Bull. Russ. Acad. Sci. Phys. 2024. V. 88. No. 1. P. 6.
  3. Долгирев В.О., Шарангович С.Н. // Изв. РАН. Сер. физ. 2023. Т. 87. № 1. С. 12
  4. Sharangovich S.N., Dolgirev V.O. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 1. P. 7.
  5. Malallah R., Li H., Qi Y. et al. // J. Opt. Soc. Amer. A. 2019. V. 36. No. 3. P. 320.
  6. Malallah R., Li H., Qi Y. et al. // J. Opt. Soc. Amer. A. 2019. V. 36. No. 3. P. 334.
  7. Pen E.F., Rodionov M.Yu., Chubakov P.A. // Optoelectron. Instrum. Data Process. 2017. V. 53. P. 59.
  8. Pen E.F., Rodionov M.Yu. // Quantum Electron. 2017. V. 40. No. 10. P. 919.
  9. Nordin G.P., Johnsonm R.V. // J. Opt. Soc. Amer. A. 1992. V. 9. No. 12. P. 2206.
  10. Yan X., Wang X., Chen Y. et al. // Appl. Phys. B. 2019. V. 125. Art. No. 67.
  11. Yan X., Gao L., Yang X. et al. // Opt. Express. 2014. V. 22. No. 21. P. 26128.
  12. Казанский Н.Л., Хонина С.Н., Карпеев С.В., Порфирьев А.П. // Квант. электрон. 2020. Т. 50. № 7. С. 636
  13. Kazanskiy N.L., Khonina S.N., Karpeev S.V. et al. // Quantum Electron. 2020. V. 50. No. 7. P. 629.
  14. Kudryashov S.I. // Appl. Surf. Sci. 2019. V. 484. P. 948.
  15. Pavlov D. // Optics Lett. 2019. V. 44. No. 2. P. 283.
  16. Aimin Y., Liren L., Yanan Z. et al. // J. Opt. Soc. Amer. A. 2009. V. 26. No. 1. P. 135.
  17. Dovolnov E.A., Sharangovich S.N., Sheridan J.T. // Photorefractive effects, materials, and devices 2005 (PR05). OSA Trends in Optics and Photonics Series (TOPS), 2005. P. 337.
  18. Сонин А.С. Введение в физику жидких кристаллов. M.: Наука. Главн. ред. физ.-мат. лит., 1983. 320 с.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025