Conversion of selective characteristics of electrically controlled chirped multilayer inhomogeneous diffraction structures based on photopolymerizing compositions with nematic liquid crystals
- Autores: Sharangovich S.N.1, Dolgirev V.O.1, Rastrygin D.S.1
-
Afiliações:
- Tomsk State University of Control and Radioelectronics Systems
- Edição: Volume 89, Nº 1 (2025)
- Páginas: 28-33
- Seção: Wave Phenomena: Physics and Applications
- URL: https://transsyst.ru/0367-6765/article/view/683814
- DOI: https://doi.org/10.31857/S0367676525010057
- EDN: https://elibrary.ru/DBZAIR
- ID: 683814
Citar
Resumo
We developed the analytical model of optical radiation diffraction on chirped multilayer inhomogeneous diffraction structures formed by the holographic method in photopolymerizing compositions with nematic liquid crystals having smooth optical heterogeneity in layer thickness. By numerical calculation, it was shown that using the chirping method it is possible to multiply the angular and spectral characteristics of multilayer inhomogeneous holographic diffraction structures formed in photopolymerizing compositions with nematic liquid crystals.
Sobre autores
S. Sharangovich
Tomsk State University of Control and Radioelectronics SystemsTomsk, Russia
V. Dolgirev
Tomsk State University of Control and Radioelectronics SystemsTomsk, Russia
D. Rastrygin
Tomsk State University of Control and Radioelectronics Systems
Email: gg9dragon9gg@gmail.com
Tomsk, Russia
Bibliografia
- Шарангович С.Н., Долгирев В.О., Растрыгин Д.С. // Изв. РАН. Сер. физ. 2024. Т. 88. № 1. С. 11
- Sharangovich S.N., Dolgirev V.O., Rastrygin D.S. // Bull. Russ. Acad. Sci. Phys. 2024. V. 88. No. 1. P. 6.
- Долгирев В.О., Шарангович С.Н. // Изв. РАН. Сер. физ. 2023. Т. 87. № 1. С. 12
- Sharangovich S.N., Dolgirev V.O. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 1. P. 7.
- Malallah R., Li H., Qi Y. et al. // J. Opt. Soc. Amer. A. 2019. V. 36. No. 3. P. 320.
- Malallah R., Li H., Qi Y. et al. // J. Opt. Soc. Amer. A. 2019. V. 36. No. 3. P. 334.
- Pen E.F., Rodionov M.Yu., Chubakov P.A. // Optoelectron. Instrum. Data Process. 2017. V. 53. P. 59.
- Pen E.F., Rodionov M.Yu. // Quantum Electron. 2017. V. 40. No. 10. P. 919.
- Nordin G.P., Johnsonm R.V. // J. Opt. Soc. Amer. A. 1992. V. 9. No. 12. P. 2206.
- Yan X., Wang X., Chen Y. et al. // Appl. Phys. B. 2019. V. 125. Art. No. 67.
- Yan X., Gao L., Yang X. et al. // Opt. Express. 2014. V. 22. No. 21. P. 26128.
- Казанский Н.Л., Хонина С.Н., Карпеев С.В., Порфирьев А.П. // Квант. электрон. 2020. Т. 50. № 7. С. 636
- Kazanskiy N.L., Khonina S.N., Karpeev S.V. et al. // Quantum Electron. 2020. V. 50. No. 7. P. 629.
- Kudryashov S.I. // Appl. Surf. Sci. 2019. V. 484. P. 948.
- Pavlov D. // Optics Lett. 2019. V. 44. No. 2. P. 283.
- Aimin Y., Liren L., Yanan Z. et al. // J. Opt. Soc. Amer. A. 2009. V. 26. No. 1. P. 135.
- Dovolnov E.A., Sharangovich S.N., Sheridan J.T. // Photorefractive effects, materials, and devices 2005 (PR05). OSA Trends in Optics and Photonics Series (TOPS), 2005. P. 337.
- Сонин А.С. Введение в физику жидких кристаллов. M.: Наука. Главн. ред. физ.-мат. лит., 1983. 320 с.
Arquivos suplementares
